Sequential Domain Adaptation by Synthesizing Distributionally Robust Experts

Least squares estimators, when trained on a few target domain samples, may predict poorly. Supervised domain adaptation aims to improve the predictive accuracy by exploiting additional labeled training samples from a source distribution that is close to the target distribution. Given available data, we investigate novel strategies to synthesize a family of least squares estimator … Read more

Nonconvex Equilibrium Models for Energy Markets: Exploiting Price Information to Determine the Existence of an Equilibrium

Motivated by examples from the energy sector, we consider market equilibrium problems (MEPs) involving players with nonconvex strategy spaces or objective functions, where the latter are assumed to be linear in market prices. We propose an algorithm that determines if an equilibrium of such an MEP exists and that computes an equilibrium in case of … Read more

Maximal perimeter and maximal width of a convex small polygon

A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with $n=2^s$ sides are unknown when $s \ge 4$. In this paper, we construct a family of convex small $n$-gons, $n=2^s$ with $s\ge 4$, and show that their perimeters and their widths are within … Read more

Tight bounds on the maximal perimeter of convex equilateral small polygons

A small polygon is a polygon of unit diameter. The maximal perimeter of a convex equilateral small polygon with $n=2^s$ vertices is not known when $s \ge 4$. In this paper, we construct a family of convex equilateral small $n$-gons, $n=2^s$ and $s \ge 4$, and show that their perimeters are within $\pi^4/n^4 + O(1/n^5)$ … Read more

Convergence of Quasi-Newton Methods for Solving Constrained Generalized Equations

In this paper, we focus on quasi-Newton methods to solve constrained generalized equations. As is well-known, this problem was firstly studied by Robinson and Josephy in the 70’s. Since then, it has been extensively studied by many other researchers, specially Dontchev and Rockafellar. Here, we propose two Broyden-type quasi-Newton approaches to dealing with constrained generalized … Read more

Proximal Point Algorithm on the Stiefel Manifold

In this paper, we consider the problem of minimizing a continuously differentiable function on the Stiefel manifold. To solve this problem, we develop a geodesic-free proximal point algorithm, which does not require the use of the Riemannian distance. The proposed method can be regarded as an iterative fixed-point method, which repeatedly applies a proximal operator … Read more

Adaptive Regularization Minimization Algorithms with Non-Smooth Norms

A regularization algorithm (AR1pGN) for unconstrained nonlinear minimization is considered, which uses a model consisting of a Taylor expansion of arbitrary degree and regularization term involving a possibly non smooth norm. It is shown that the non-smoothness of the norm does not affect the O(\epsilon_1^{-(p+1)/p}) upper bound on evaluation complexity for finding first-order \epsilon_1-approximate minimizers … Read more

Optimal Convergence Rates for the Proximal Bundle Method

We study convergence rates of the classic proximal bundle method for a variety of nonsmooth convex optimization problems. We show that, without any modification, this algorithm adapts to converge faster in the presence of smoothness or a Hölder growth condition. Our analysis reveals that with a constant stepsize, the bundle method is adaptive, yet it … Read more

ACCELERATING CONVERGENCE OF A GLOBALIZED SEQUENTIAL QUADRATIC PROGRAMMING METHOD TO CRITICAL LAGRANGE MULTIPLIERS

This paper concerns the issue of asymptotic acceptance of the true Hessian and the full step by the sequential quadratic programming algorithm for equality-constrained optimization problems. In order to enforce global convergence, the algorithm is equipped with a standard Armijo linesearch procedure for a nonsmooth exact penalty function. The specificity of considerations here is that … Read more

Average Curvature FISTA for Nonconvex Smooth Composite Optimization Problems

A previous authors’ paper introduces an accelerated composite gradient (ACG) variant, namely AC-ACG, for solving nonconvex smooth composite optimization (N-SCO) problems. In contrast to other ACG variants, AC-ACG estimates the local upper curvature of the N-SCO problem by using the average of the observed upper-Lipschitz curvatures obtained during the previous iterations, and uses this estimation … Read more