An Outer-approximation Guided Optimization Approach for Constrained Neural Network Inverse Problems

This paper discusses an outer-approximation guided optimization method for constrained neural network inverse problems with rectified linear units. The constrained neural network inverse problems refer to an optimization problem to find the best set of input values of a given trained neural network in order to produce a predefined desired output in presence of constraints … Read more

On Standard Quadratic Programs with Exact and Inexact Doubly Nonnegative Relaxations

The problem of minimizing a (nonconvex) quadratic form over the unit simplex, referred to as a standard quadratic program, admits an exact convex conic formulation over the computationally intractable cone of completely positive matrices. Replacing the intractable cone in this formulation by the larger but tractable cone of doubly nonnegative matrices, i.e., the cone of … Read more

Convergence of Inexact Forward–Backward Algorithms Using the Forward–Backward Envelope

This paper deals with a general framework for inexact forward–backward algorithms aimed at minimizing the sum of an analytic function and a lower semicontinuous, subanalytic, convex term. Such framework relies on an implementable inexactness condition for the computation of the proximal operator, and a linesearch procedure which is possibly performed whenever a variable metric is … Read more

Zero Order Stochastic Weakly Convex Composite Optimization

In this paper we consider stochastic weakly convex composite problems, however without the existence of a stochastic subgradient oracle. We present a derivative free algorithm that uses a two point approximation for computing a gradient estimate of the smoothed function. We prove convergence at a similar rate as state of the art methods, however with … Read more

A Hybrid Gradient Method for Strictly Convex Quadratic Programming

In this paper, a reliable hybrid algorithm for solving convex quadratic minimization problems is presented. At each iteration, two points are computed: first, an auxiliary point $\dot{x}_k$ is generated by performing a gradient step equipped with an optimal steplength, then, the next iterate $x_{k+1}$ is obtained through a weighted sum of $\dot{x}_k$ with the penultimate … Read more

Sum theorems for maximal monotone operators under weak compactness conditions

This note presents a summary of our most recent results concerning the maximal monotonicity of the sum of two maximal monotone operators defined in a locally convex space under the classical interiority qualification condition when one of their domains or ranges has a weak relative compactness property. Citation NA Article Download View Sum theorems for … Read more

Coordinate Descent Without Coordinates: Tangent Subspace Descent on Riemannian Manifolds

We extend coordinate descent to manifold domains, and provide convergence analyses for geodesically convex and non-convex smooth objective functions. Our key insight is to draw an analogy between coordinate blocks in Euclidean space and tangent subspaces of a manifold. Hence, our method is called tangent subspace descent (TSD). The core principle behind ensuring convergence of … Read more

A Class of Smooth Exact Penalty Function Methods for Optimization Problems with Orthogonality Constraints

Updating the augmented Lagrangian multiplier by closed-form expression yields efficient first-order infeasible approach for optimization problems with orthogonality constraints. Hence, parallelization becomes tractable in solving this type of problems. Inspired by this closed-form updating scheme, we propose an exact penalty function model with compact convex constraints (PenC). We show that PenC can act as an … Read more

A bundle method for nonsmooth DC programming with application to chance-constrained problems

This work considers nonsmooth and nonconvex optimization problems whose objective and constraint functions are defined by difference-of-convex (DC) functions. We consider an infeasible bundle method based on the so-called improvement functions to compute critical points for problems of this class. Our algorithm neither employs penalization techniques nor solves subproblems with linearized constraints. The approach, which … Read more

On convex hulls of epigraphs of QCQPs

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study sufficient conditions for a convex hull result that immediately implies that the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such … Read more