Data-compatibility of algorithms

The data-compatibility approach to constrained optimization, proposed here, strives to a point that is “close enough” to the solution set and whose target function value is “close enough” to the constrained minimum value. These notions can replace analysis of asymptotic convergence to a solution point of infinite sequences generated by specific algorithms. We consider a … Read more

Dynamic string-averaging CQ-methods for the split feasibility problem with percentage violation constraints arising in radiation therapy treatment planning

In this paper we study a feasibility-seeking problem with percentage violation con- straints. These are additional constraints, that are appended to an existing family of constraints, which single out certain subsets of the existing constraints and declare that up to a speci ed fraction of the number of constraints in each subset is allowed to be … Read more

On the tightness of SDP relaxations of QCQPs

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study conditions under which the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such sufficient conditions. Then using this framework, we show … Read more

An inexact augmented Lagrangian method for nonsmooth optimization on Riemannian manifold

We consider a nonsmooth optimization problem on Riemannian manifold, whose objective function is the sum of a differentiable component and a nonsmooth convex function. We propose a manifold inexact augmented Lagrangian method (MIALM) for the considered problem. The problem is reformulated to a separable form. By utilizing the Moreau envelope, we get a smoothing subproblem … Read more

A Fully Stochastic Second-Order Trust Region Method

A stochastic second-order trust region method is proposed, which can be viewed as a second-order extension of the trust-region-ish (TRish) algorithm proposed by Curtis et al. [INFORMS J. Optim. 1(3) 200–220, 2019]. In each iteration, a search direction is computed by (approximately) solving a trust region subproblem defined by stochastic gradient and Hessian estimates. The … Read more

Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least-Squares Case

In this paper we conduct a study of both superiorization and optimization approaches for the reconstruction problem of superiorized/regularized solutions to underdetermined systems of linear equations with nonnegativity variable bounds. Specifically, we study a (smoothed) total variation regularized least-squares problem with nonnegativity constraints. We consider two approaches: (a) a superiorization approach that, in contrast to … Read more

Optimization of noisy blackboxes with adaptive precision

In derivative-free and blackbox optimization, the objective function is often evaluated through the execution of a computer program seen as a blackbox. It can be noisy, in the sense that its outputs are contaminated by random errors. Sometimes, the source of these errors is identified and controllable, in the sense that it is possible to … Read more

Randomized Sketching Algorithms for Low Memory Dynamic Optimization

This paper develops a novel limited-memory method to solve dynamic optimization problems. The memory requirements for such problems often present a major obstacle, particularly for problems with PDE constraints such as optimal flow control, full waveform inversion, and optical tomography. In these problems, PDE constraints uniquely determine the state of a physical system for a … Read more

A Generalized Worst-Case Complexity Analysis for Non-Monotone Line Searches

We study the worst-case complexity of a non-monotone line search framework that covers a wide variety of known techniques published in the literature. In this framework, the non-monotonicity is controlled by a sequence of nonnegative parameters. We obtain complexity bounds to achieve approximate first-order optimality even when this sequence is not summable. ArticleDownload View PDF

Online matrix factorization for Markovian data and applications to Network Dictionary Learning

Online Matrix Factorization (OMF) is a fundamental tool for dictionary learning problems, giving an approximate representation of complex data sets in terms of a reduced number of extracted features. Convergence guarantees for most of the OMF algorithms in the literature assume independence between data matrices, and the case of a dependent data stream remains largely … Read more