On the Relation between MPECs and Optimization Problems in Abs-Normal Form

We show that the problem of unconstrained minimization of a function in abs-normal form is equivalent to identifying a certain stationary point of a counterpart Mathematical Program with Equilibrium Constraints (MPEC). Hence, concepts introduced for the abs-normal forms turn out to be closely related to established concepts in the theory of MPECs. We give a … Read more

Interior Point Methods and Preconditioning for PDE-Constrained Optimization Problems Involving Sparsity Terms

PDE-constrained optimization problems with control or state constraints are challenging from an analytical as well as numerical perspective. The combination of these constraints with a sparsity-promoting L1 term within the objective function requires sophisticated optimization methods. We propose the use of an Interior Point scheme applied to a smoothed reformulation of the discretized problem, and … Read more

On the Complexity of Detecting Convexity over a Box

It has recently been shown that the problem of testing global convexity of polynomials of degree four is {strongly} NP-hard, answering an open question of N.Z. Shor. This result is minimal in the degree of the polynomial when global convexity is of concern. In a number of applications however, one is interested in testing convexity … Read more

Selection of variables in parallel space decomposition for the mesh adaptive direct search algorithm

The parallel space decomposition of the Mesh Adaptive Direct Search algorithm (PSDMADS proposed in 2008) is an asynchronous parallel method for constrained derivative-free optimization with large number of variables. It uses a simple generic strategy to decompose a problem into smaller dimension subproblems. The present work explores new strategies for selecting subset of variables defining … Read more

Efficient Optimization Algorithms for Robust Principal Component Analysis and Its Variants

Robust PCA has drawn significant attention in the last decade due to its success in numerous application domains, ranging from bio-informatics, statistics, and machine learning to image and video processing in computer vision. Robust PCA and its variants such as sparse PCA and stable PCA can be formulated as optimization problems with exploitable special structures. … Read more

Sensitivity Analysis for Nonlinear Programming in CasADi

We present an extension of the CasADi numerical optimization framework that allows arbitrary order NLP sensitivities to be calculated automatically and efficiently. The approach, which can be used together with any NLP solver available in CasADi, is based on a sparse QR factorization and an implementation of a primal-dual active set method. The whole toolchain … Read more

A limited-memory optimization method using the infinitely many times repeated BNS update and conjugate directions

To improve the performance of the limited-memory variable metric L-BFGS method for large scale unconstrained optimization, repeating of some BFGS updates was proposed in [1, 2]. But the suitable extra updates need to be selected carefully, since the repeating process can be time consuming. We show that for the limited-memory variable metric BNS method, matrix … Read more

A family of spectral gradient methods for optimization

We propose a family of spectral gradient methods, whose stepsize is determined by a convex combination of the short Barzilai-Borwein (BB) stepsize and the long BB stepsize. It is shown that each member of the family shares certain quasi-Newton property in the sense of least squares. The family also includes some other gradient methods as … Read more

Parallel and Distributed Successive Convex Approximation Methods for Big-Data Optimization

Recent years have witnessed a surge of interest in parallel and distributed optimization methods for large-scale systems. In particular, nonconvex large-scale optimization problems have found a wide range of applications in several engineering fields. The design and the analysis of such complex, large-scale, systems pose several challenges and call for the development of new optimization … Read more

Stable interior point method for convex quadratic programming with strict error bounds

We present a short step interior point method for solving a class of nonlinear programming problems with quadratic objective function. Convex quadratic programming problems can be reformulated as problems in this class. The method is shown to have weak polynomial time complexity. A complete proof of the numerical stability of the method is provided. No … Read more