Exploiting Aggregate Sparsity in Second Order Cone Relaxations for Quadratic Constrained Quadratic Programming Problems

Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. (2001) and second-order cone programming (SOCP) relaxation have been popular. In this paper, we exploit the aggregate sparsity of SOCP … Read more

Understanding Limitation of Two Symmetrized Orders by Worst-case Complexity

It was recently found that the standard version of multi-block cyclic ADMM diverges. Interestingly, Gaussian Back Substitution ADMM (GBS-ADMM) and symmetric Gauss-Seidel ADMM (sGS-ADMM) do not have the divergence issue. Therefore, it seems that symmetrization can improve the performance of the classical cyclic order. In another recent work, cyclic CD (Coordinate Descent) was shown to … Read more

Adaptive Sampling Quasi-Newton Methods for Derivative-Free Stochastic Optimization

We consider stochastic zero-order optimization problems, which arise in settings from simulation optimization to reinforcement learning. We propose an adaptive sampling quasi-Newton method where we estimate the gradients of a stochastic function using finite differences within a common random number framework. We employ modified versions of a norm test and an inner product quasi-Newton test … Read more

Optimality conditions for nonlinear second-order cone programming and symmetric cone programming

Nonlinear symmetric cone programming (NSCP) generalizes important optimization problems such as nonlinear programming, nonlinear semidefinite programming and nonlinear second-order cone programming (NSOCP). In this work, we present two new optimality conditions for NSCP without constraint qualifications, which implies the Karush-Kuhn-Tucker conditions under a condition weaker than Robinson’s constraint qualification. In addition, we show the relationship … Read more

On Mixed-Integer Optimal Control with Constrained Total Variation of the Integer Control

The combinatorial integral approximation (CIA) decomposition suggests to solve mixed-integer optimal control problems (MIOCPs) by solving one continuous nonlinear control problem and one mixed-integer linear program (MILP). Unrealistic frequent switching can be avoided by adding a constraint on the total variation to the MILP. Within this work, we present a fast heuristic way to solve … Read more

A unified convergence theory for Non monotone Direct Search Methods (DSMs) with extensions \ to DFO with mixed and categorical variables

This paper presents a unified convergence theory for non monotonous Direct Search Methods (DSMs), which embraces several algorithms that have been proposed for the solution of unconstrained and boxed constraints models. This paper shows that these models can be theoretically solved with the same methodology and under the same weak assumptions. All proofs have a … Read more

Inexact proximal stochastic second-order methods for nonconvex composite optimization

In this paper, we propose a framework of Inexact Proximal Stochastic Second-order (IPSS) methods for solving nonconvex optimization problems, whose objective function consists of an average of finitely many, possibly weakly, smooth functions and a convex but possibly nons- mooth function. At each iteration, IPSS inexactly solves a proximal subproblem constructed by using some positive … Read more

Experimental operation of a solar-driven climate system with thermal energy storages using mixed-integer nonlinear MPC

This work presents the results of experimental operation of a solar-driven climate system using mixed-integer nonlinear Model Predictive Control (MPC). The system is installed in a university building and consists of two solar thermal collector fields, an adsorption cooling machine with different operation modes, a stratified hot water storage with multiple inlets and outlets as … Read more

Genericity in linear algebra and analysis with applications to optimization

This report gives a concise overview into genericity results for sets of matrices, linear and nonlinear equations as well as for unconstrained and constrained optimization problems. We present the generic behavior of non-parametric problems and parametric families of problems. The genericity analysis is based on results from differential geometry, in particular transversality theorems. ArticleDownload View … Read more

Constraint-Preconditioned Krylov Solvers for Regularized Saddle-Point Systems

We consider the iterative solution of regularized saddle-point systems. When the leading block is symmetric and positive semi-definite on an appropriate subspace, Dollar, Gould, Schilders, and Wathen (SIAM J. Matrix Anal. Appl., 28(1), 2006) describe how to apply the conjugate gradient (CG) method coupled with a constraint preconditioner, a choice that has proved to be … Read more