A Derivative-Free and Ready-to-Use NLP Solver for Matlab or Octave

This paper introduces a derivative-free and ready-to-use solver for nonlinear programs with nonlinear equality and inequality constraints (NLPs). Using finite differences and a sequential quadratic programming (SQP) approach, the algorithm aims at finding a local minimizer and no extra attempt is made to generate a globally optimal solution. Due to the use of finite differences, … Read more

Parallel Solvers for Mixed Integer Linear Optimization

In this article, we provide an overview of the current state of the art with respect to solution of mixed integer linear optimization problems (MILPS) in parallel. Sequential algorithms for solving MILPs have improved substantially in the last two decades and commercial MILP solvers are now considered effective off-the-shelf tools for optimization. Although concerted development … Read more

A Branch-and-Cut Algorithm for Mixed Integer Bilevel Linear Optimization Problems and Its Implementation

In this paper, we describe an algorithmic framework for solving mixed integer bilevel linear optimization problems (MIBLPs) by a generalized branch-and-cut approach. The framework presented merges features from existing algorithms (for both traditional mixed integer linear optimization and MIBLPs) with new techniques to produce a flexible and robust framework capable of solving a wide range … Read more

Generation techniques for linear and integer programming instances with controllable properties

This paper addresses the problem of generating synthetic test cases for experimentation in linear programming. We propose a method which maps instance generation and instance space search to an alternative encoded space. This allows us to develop a generator for feasible bounded linear programming instances with controllable properties. We show that this method is capable … Read more

FiberSCIP – A shared memory parallelization of SCIP

Recently, parallel computing environments have become significantly popular. In order to obtain the benefit of using parallel computing environments, we have to deploy our programs for these effectively. This paper focuses on a parallelization of SCIP (Solving Constraint Integer Programs), which is a MIP solver and constraint integer programming framework available in source code. There … Read more

Symmetric ADMM with Positive-Indefinite Proximal Regularization for Linearly Constrained Convex Optimization

The proximal ADMM which adds proximal regularizations to ADMM’s subproblems is a popular and useful method for linearly constrained separable convex problems, especially its linearized case. A well-known requirement on guaranteeing the convergence of the method in the literature is that the proximal regularization must be positive semidefinite. Recently it was shown by He et … Read more

Learning Enabled Optimization: Towards a Fusion of Statistical Learning and Stochastic Optimization

Several emerging applications, such as “Analytics of Things” and “Integrative Analytics” call for a fusion of statistical learning (SL) and stochastic optimization (SO). The Learning Enabled Optimization paradigm fuses concepts from these disciplines in a manner which not only enriches both SL and SO, but also provides a framework which supports rapid model updates and … Read more

The SCIP Optimization Suite 4.0

The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving … Read more

Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization. Part I: Model and Convergence

We propose a novel asynchronous parallel algorithmic framework for the minimization of the sum of a smooth nonconvex function and a convex nonsmooth regularizer, subject to both convex and nonconvex constraints. The proposed framework hinges on successive convex approximation techniques and a novel probabilistic model that captures key elements of modern computational architectures and asynchronous … Read more