GloptiPoly – Global Optimization over Polynomials withMatlab and SeDuMi

GloptiPoly is a Matlab/SeDuMi add-on to build and solve convex linear matrix inequality relaxations of the (generally non-convex) global optimization problem of minimizing a multivariable polynomial function subject to polynomial inequality, equality or integer constraints. It generates a series of lower bounds monotonically converging to the global optimum. Numerical experiments show that for most of … Read more

Large-Scale Linear Programming Techniques for the Design of Protein Folding Potentials

We present large-scale optimization techniques to model the energy function that underlies the folding process of proteins. Linear Programming is used to identify parameters in the energy function model, the objective being that the model predict the structure of known proteins correctly. Such trained functions can then be used either for {\em ab-initio} prediction or … Read more

Improved Interval Constraint Propagation for Constraints on Partial Derivatives

Automatic differentiation (AD) automatically transforms programs which calculate elementary functions into programs which calculate the gradients of these functions. Unlike other differentiation techniques, AD allows one to calculate the gradient of any function at the cost of at most 5 values of the function (in terms of time). Interval constraint programming (ICP) is a part … Read more

Computational Experience and the Explanatory Value of Condition Numbers for Linear Optimization

The goal of this paper is to develop some computational experience and test the practical relevance of the theory of condition numbers C(d) for linear optimization, as applied to problem instances that one might encounter in practice. We used the NETLIB suite of linear optimization problems as a test bed for condition number computation and … Read more

NLPQLP: A New Fortran Implementation of a Sequential Quadratic Programming Algorithm

The Fortran subroutine NLPQLP solves smooth nonlinear programming problems and is an extension of the code NLPQL. The new version is specifically tuned to run under distributed systems. A new input parameter l is introduced for the number of parallel machines, that is the number of function calls to be executed simultaneously. In case of … Read more

Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed Integer Programming

We present a heuristic method for general 0-1 mixed integer programming, intended for eventual incorporation into parallel branch-and-bound methods for solving such problems exactly. The core of the heuristic is a rounding method based on simplex pivots, employing only gradient information, for a strictly concave, differentiable merit function measuring integer feasibility. When local minima of … Read more

USING SEDUMI 1.02, A MATLAB TOOLBOX FOR OPTIMIZATION OVER SYMMETRIC CONES (Updated for Version 1.05)

SeDuMi 1.05 is an add-on for MATLAB, which lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity. This paper describes how to work with this toolbox. CitationOptimization Methods and Software … Read more

Object-Oriented Software for Quadratic Programming

We describe the object-oriented software package OOQP for solving convex quadratic programming problems (QP). The primal-dual interior point algorithms supplied by OOQP are implemented in a way that is largely independent of the problem structure. Users may exploit problem structure by supplying linear algebra, problem data, and variable classes that are customized to their particular … Read more

Extending an Algebraic Modeling Language to Support Constraint Programming

We describe extensions to algebraic modeling languages and their solver interfaces that will be needed to take advantage of constraint programming solvers, particularly in the area of combinatorial optimization. CitationTechnical Report, Department of Industrial Engineering and Management Sciences, Northwestern University (2001); based on a shorter version that appeared in the Proceedings of the Third International … Read more

SDPT3 – a MATLAB software package for semidefinite-quadratic-linear programming, version 3.0

This software package is a MATLAB implementation of infeasible path-following algorithms for solving conic programming problems whose constraint cone is a product of semidefinite cones, second-order cones, and/or nonnegative orthants. It employs a predictor-corrector primal-dual path-following method, with either the HKM or the NT search direction. The basic code is written in Matlab, but key … Read more