Manifold Identification for Ultimately Communication-Efficient Distributed Optimization

This work proposes a progressive manifold identification approach for distributed optimization with sound theoretical justifications to greatly reduce both the rounds of communication and the bytes communicated per round for partly-smooth regularized problems such as the $\ell_1$- and group-LASSO-regularized ones. Our two-stage method first uses an inexact proximal quasi-Newton method to iteratively identify a sequence … Read more

Solving Previously Unsolved MIP Instances with ParaSCIP on Supercomputers by using up to 80,000 Cores

Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in … Read more

Linearization and Parallelization Schemes for Convex Mixed-Integer Nonlinear Optimization

We develop and test linearization and parallelization schemes for convex mixed-integer nonlinear programming. Several linearization approaches are proposed for LP/NLP based branch-and-bound. Some of these approaches strengthen the linear approximation to nonlinear constraints at the root node and some at the other branch-and-bound nodes. Two of the techniques are specifically applicable to commonly found univariate … Read more

A parallel splitting ALM-based algorithm for separable convex programming

The augmented Lagrangian method (ALM) provides a benchmark for tackling the canonical convex minimization problem with linear constraints. We consider a special case where the objective function is the sum of $m$ individual subfunctions without coupled variables. The recent study reveals that the direct extension of ALM for separable convex programming problems is not necessarily … Read more

A Distributed Quasi-Newton Algorithm for Primal and Dual Regularized Empirical Risk Minimization

We propose a communication- and computation-efficient distributed optimization algorithm using second-order information for solving empirical risk minimization (ERM) problems with a nonsmooth regularization term. Our algorithm is applicable to both the primal and the dual ERM problem. Current second-order and quasi-Newton methods for this problem either do not work well in the distributed setting or … Read more

A robust method based on LOVO functions for solving least squares problems

The robust adjustment of nonlinear models to data is considered in this paper. When data comes from real experiments, it is possible that measurement errors cause the appearance of discrepant values, which should be ignored when adjusting models to them. This work presents a Lower Order-value Optimization (LOVO) version of the Levenberg-Marquardt algorithm, which is … Read more

Assessing the Effectiveness of (Parallel) Branch-and-bound Algorithms

Empirical studies are fundamental in assessing the effectiveness of implementations of branch-and-bound algorithms. The complexity of such implementations makes empirical study difficult for a wide variety of reasons. Various attempts have been made to develop and codify a set of standard techniques for the assessment of optimization algorithms and their software implementations; however, most previous … Read more

Decentralized Online Integer Programming Problems with a Coupling Cardinality Constraint

We consider a problem involving a set of agents who need to coordinate their actions to optimize the sum of their objectives while satisfying a common resource constraint. The objective functions of the agents are unknown to them a priori and are revealed in an online manner. The resulting problem is an online optimization problem … Read more

Scalable Preconditioning of Block-Structured Linear Algebra Systems using ADMM

We study the solution of block-structured linear algebra systems arising in optimization by using iterative solution techniques. These systems are the core computational bottleneck of many problems of interest such as parameter estimation, optimal control, network optimization, and stochastic programming. Our approach uses a Krylov solver (GMRES) that is preconditioned with an alternating method of … Read more

On Electricity Market Equilibria with Storage: Modeling, Uniqueness, and a Distributed ADMM

We consider spot-market trading of electricity including storage operators as additional agents besides producers and consumers. Storages allow for shifting produced electricity from one time period to a later one. Due to this, multiple market equilibria may occur even if classical uniqueness assumptions for the case without storages are satisfied. For models containing storage operators, … Read more