A Jacobi-type Newton method for Nash equilibrium problems with descent guarantees

A common strategy for solving an unconstrained two-player Nash equilibrium problem with continuous variables is applying Newton’s method to the system of nonlinear equations obtained by the corresponding first-order necessary optimality conditions. However, when taking into account the game dynamics, it is not clear what is the goal of each player when considering that they … Read more

Optimizing Vaccine Distribution in Developing Countries under Natural Disaster Risk

For many developing countries, COVID-19 vaccination roll-out programs are not only slow but vaccination centers are also exposed to the risk of natural disaster, like flooding, which may slow down vaccination progress even further. Policy-makers in developing countries therefore seek to implement strategies that hedge against distribution risk in order for vaccination campaigns to run … Read more

Generalized polarity and weakest constraint qualifications in multiobjective optimization

In G. Haeser, A. Ramos, Constraint Qualifications for Karush-Kuhn-Tucker Conditions in Multiobjective Optimization, JOTA, Vol.~187 (2020), 469-487, a generalization of the normal cone from single objective to multiobjective optimization is introduced, along with a weakest constraint qualification such that any local weak Pareto optimal point is a weak Kuhn-Tucker point. We extend this approach to … Read more

Relaxations and Duality for Multiobjective Integer Programming

Multiobjective integer programs (MOIPs) simultaneously optimize multiple objective func- tions over a set of linear constraints and integer variables. In this paper, we present continuous, convex hull and Lagrangian relaxations for MOIPs and examine the relationship among them. The convex hull relaxation is tight at supported solutions, i.e., those that can be derived via a … Read more

Software for data-based stochastic programming using bootstrap estimation

In this paper we describe software for stochastic programming that uses only sampled data to obtain both a consistent sample-average solution and a consistent estimate of confidence intervals for the optimality gap using bootstrap and bagging. The underlying distribution whence the samples come is not required. Article Download View Software for data-based stochastic programming using … Read more

Two-stage distributionally robust noncooperative games: Existence of Nash equilibrium and its application to Cournot-Nash competition

Two-stage distributionally robust stochastic noncooperative games with continuous decision variables are studied. In such games, each player solves a two-stage distributionally robust optimization problem depending on the decisions of the other players. Existing studies in this area have been limited with strict assumptions, such as linear decision rules, and supposed that each player solves a … Read more

Computing Tchebychev weight space decomposition for multiobjective discrete optimization problems

Multiobjective discrete optimization (MODO) techniques, including weight space decomposition, have received increasing attention in the last decade. The primary weight space decomposition technique in the literature is defined for the weighted sum utility function, through which sets of weights are assigned to a subset of the nondominated set. Recent work has begun to study the … Read more

Multilinear formulations for computing Nash equilibrium of multi-player matrix games

We present multilinear and mixed-integer multilinear programs to find a Nash equilibrium in multi-player strategic-form games. We compare the formulations to common algorithms in Gambit, and conclude that a multilinear feasibility program finds a Nash equilibrium faster than any of the methods we compare it to, including the quantal response equilibrium method, which is recommended … Read more

Computing an enclosure for multiobjective mixed-integer nonconvex optimization problems using piecewise linear relaxations

In this paper, a new method for computing an enclosure of the nondominated set of multiobjective mixed-integer problems without any convexity requirements is presented. In fact, our criterion space method makes use of piecewise linear relaxations in order to bypass the nonconvexity of the original problem. The method chooses adaptively which level of relaxation is … Read more