Minimum Color-Degree Perfect b -Matchings

The minimum color-degree perfect b-matching roblem (Col-BM) is a new extension of the perfect b-matching problem to edge-colored graphs. The objective of Col-BM is to minimize the maximum number of differently colored edges in a perfect b-matching that are incident to the same node. We show that Col-BM is NP-hard on bipartite graphs by a … Read more

Subdifferentials and SNC property of scalarization functionals with uniform level sets and applications

This paper deals with necessary conditions for minimal solutions of constrained and unconstrained optimization problems with respect to general domination sets by using a well-known nonlinear scalarization functional with uniform level sets (called Gerstewitz’ functional in the literature). The primary objective of this work is to establish revised formulas for basic and singular subdifferentials of … Read more

Learning to Project in Multi-Objective Binary Linear Programming

In this paper, we investigate the possibility of improving the performance of multi-objective optimization solution approaches using machine learning techniques. Specifically, we focus on multi-objective binary linear programs and employ one of the most effective and recently developed criterion space search algorithms, the so-called KSA, during our study. This algorithm computes all nondominated points of … Read more

Hybrid Rebalancing with Dynamic Hubbing for Free-floating Bike Sharing Using Multi-objective Simulation Optimization

For rebalancing problem of free-floating bike sharing systems, we propose dynamic hubbing (i.e. dynamically determining geofencing areas) and hybrid rebalancing (combining user-based and operator-based strategies) and solve the problem with a novel multi-objective simulation optimization approach. Given historical usage data and real-time bike GPS location information, dynamic geofenced areas (hubs) are determined to encourage users … Read more

Reinforcement Learning via Parametric Cost Function Approximation for Multistage Stochastic Programming

The most common approaches for solving stochastic resource allocation problems in the research literature is to either use value functions (“dynamic programming”) or scenario trees (“stochastic programming”) to approximate the impact of a decision now on the future. By contrast, common industry practice is to use a deterministic approximation of the future which is easier … Read more

The Noncooperative Fixed Charge Transportation Problem

We introduce the noncooperative fixed charge transportation problem (NFCTP), which is a game-theoretic extension of the fixed charge transportation problem. In the NFCTP, competing players solve coupled fixed charge transportation problems simultaneously. Three versions of the NFCTP are discussed and compared, which differ in their treatment of shared social costs. This may be used from … Read more

A faster FPTAS for counting two-rowed contingency tables

In this paper we provide a deterministic fully polynomial time approximation scheme (FPTAS) for counting two-rowed contingency tables that is faster than any either deterministic or randomized approximation scheme for this problem known to date. Our FPTAS is derived via a somewhat sophisticated usage of the method of K-approximation sets and functions introduced by Halman … Read more

Bookings in the European Gas Market: Characterisation of Feasibility and Computational Complexity Results

As a consequence of the liberalisation of the European gas market in the last decades, gas trading and transport have been decoupled. At the core of this decoupling are so-called bookings and nominations. Bookings are special capacity right contracts that guarantee that a specified amount of gas can be supplied or withdrawn at certain entry … Read more

Policies for Inventory Models with Product Returns Forecast from Past Demands and Past Sales

Finite horizon periodic review backlog models are considered in this paper for an inventory system that remanufactures two types of cores: buyback cores and normal cores. Returns of used products as buyback cores are modelled to depend on past demands and past sales. We obtain an optimal inventory policy for the model in which returns … Read more

The Sard theorem for essentially smooth locally Lipschitz maps and applications in optimization

The classical Sard theorem states that the set of critical values of a $C^{k}$-map from an open set of $\R^n$ to $\R^p$ ($n\geq p$) has Lebesgue measure zero provided $k\geq n-p+1$. In the recent paper by Barbet, Dambrine, Daniilidis and Rifford, the so called “preparatory Sard theorem” for a compact countable set $I$ of $C^k$ … Read more