Semidefinite Programming and Nash Equilibria in Bimatrix Games

We explore the power of semidefinite programming (SDP) for finding additive epsilon-approximate Nash equilibria in bimatrix games. We introduce an SDP relaxation for a quadratic programming formulation of the Nash equilibrium (NE) problem and provide a number of valid inequalities to improve the quality of the relaxation. If a rank-1 solution to this SDP is … Read more

New algorithms for discrete vector optimization based on the Graef-Younes method and cone-monotone sorting functions

The well-known Jahn-Graef-Younes algorithm, proposed by Jahn in 2006, generates all minimal elements of a finite set with respect to an ordering cone. It consists of two Graef-Younes procedures, namely the forward iteration, which eliminates a part of the non-minimal elements, followed by the backward iteration, which is applied to the reduced set generated by … Read more

Revisiting Approximate Linear Programming Using a Saddle Point Approach

Approximate linear programs (ALPs) are well-known models for computing value function approximations (VFAs) of intractable Markov decision processes (MDPs) arising in applications. VFAs from ALPs have desirable theoretical properties, define an operating policy, and provide a lower bound on the optimal policy cost, which can be used to assess the suboptimality of heuristic policies. However, … Read more

Inexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifold

In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.(2016), from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexact variants of … Read more

The Adaptive Sampling Gradient Method: Optimizing Smooth Functions with an Inexact Oracle

Consider settings such as stochastic optimization where a smooth objective function $f$ is unknown but can be estimated with an \emph{inexact oracle} such as quasi-Monte Carlo (QMC) or numerical quadrature. The inexact oracle is assumed to yield function estimates having error that decays with increasing oracle effort. For solving such problems, we present the Adaptive … Read more

Best subset selection via bi-objective mixed integer linear programming

We study the problem of choosing the best subset of p features in linear regression given n observations. This problem naturally contains two objective functions including minimizing the amount of bias and minimizing the number of predictors. The existing approaches transform the problem into a single-objective optimization problem either by combining the two objectives using … Read more

Dual Dynamic Programming with cut selection: convergence proof and numerical experiments

We consider convex optimization problems formulated using dynamic programming equations. Such problems can be solved using the Dual Dynamic Programming algorithm combined with the Level 1 cut selection strategy or the Territory algorithm to select the most relevant Benders cuts. We propose a limited memory variant of Level 1 and show the convergence of DDP … Read more

Lower Bound On the Computational Complexity of Discounted Markov Decision Problems

We study the computational complexity of the infinite-horizon discounted-reward Markov Decision Problem (MDP) with a finite state space $\cS$ and a finite action space $\cA$. We show that any randomized algorithm needs a running time at least $\Omega(\carS^2\carA)$ to compute an $\epsilon$-optimal policy with high probability. We consider two variants of the MDP where the … Read more

Airport Capacity Extension, Fleet Investment, and Optimal Aircraft Scheduling in a Multi-Level Market Model: On the Effects of Market Regulations

In this paper we present a four-level market model that accounts for airport capacity extension, fleet investment, aircraft scheduling, and ticket trade in a liberalized aviation market with independent decision makers. In particular, budget-constrained airports decide on the first level on their optimal runway capacity extension and on a corresponding airport charge. Airports anticipate optimal … Read more

Optimal threshold classification characteristics

This study looks at the application of mathematical concepts of entropy and Fibonacci sequence in creating optimal dimensional relations of classification character. The paper is devoted to optimization of some numerical relations and integers as unified threshold characteristics of classification type, aimed for example at systemic optimizing the measuring information of various processes. The paper … Read more