A Bucket Graph Based Labeling Algorithm with Application to Vehicle Routing

We consider the Resource Constrained Shortest Path problem arising as a subproblem in state-of-the-art Branch-Cut-and-Price algorithms for vehicle routing problems. We propose a variant of the bi-directional label correcting algorithm in which the labels are stored and extended according to so-called bucket graph. Such organization of labels helps to decrease significantly the number of dominance … Read more

Primal-Dual π Learning: Sample Complexity and Sublinear Run Time for Ergodic Markov Decision Problems

Consider the problem of approximating the optimal policy of a Markov decision process (MDP) by sampling state transitions. In contrast to existing reinforcement learning methods that are based on successive approximations to the nonlinear Bellman equation, we propose a Primal-Dual π Learning method in light of the linear duality between the value and policy. The … Read more

Stochastic Dynamic Programming Using Optimal Quantizers

Multi-stage stochastic optimization is a well-known quantitative tool for decision-making under uncertainty, which applications include financial and investment planning, inventory control, energy production and trading, electricity generation planning, supply chain management and similar fields. Theoretical solution of multi-stage stochastic programs can be found explicitly only in very exceptional cases due to the complexity of the … Read more

Numerically tractable optimistic bilevel problems

We consider fully convex lower level standard optimistic bilevel problems. We show that this class of mathematical programs is sufficiently broad to encompass significant real-world applications. We establish that the critical points of a relaxation of the original problem correspond to the equilibria of a suitably defined generalized Nash equilibrium problem. The latter game is … Read more

A New Exact Algorithm to Optimize a Linear Function Over the Set of Efficient Solutions for Bi-objective Mixed Integer Linear Programs

We present the first (criterion space search) algorithm for optimizing a linear function over the set of efficient solutions of bi-objective mixed integer linear programs. The proposed algorithm is developed based on the Triangle Splitting Method (Boland et al. 2015b) which can find a full representation of the nondominated frontier of any bi-objective mixed integer … Read more

Index Policies and Performance Bounds for Dynamic Selection Problems

We consider dynamic selection problems, where a decision maker repeatedly selects a set of items from a larger collection of available items. A classic example is the dynamic assortment problem with demand learning, where a retailer chooses items to offer for sale subject to a display space constraint. The retailer may adjust the assortment over … Read more

FPBH.jl: A Feasibility Pump Based Heuristic for Multi-objective Mixed Integer Linear Programming in Julia

Feasibility pump is one of the successful heuristic solution approaches developed almost a decade ago for computing high-quality feasible solutions of single-objective integer linear programs, and it is implemented in exact commercial solvers such as CPLEX and Gurobi. In this study, we present the first Feasibility Pump Based Heuristic (FPBH) approach for approximately generating nondominated … Read more

Dynamic Relaxations for Online Bipartite Matching

Online bipartite matching (OBM) is a fundamental model underpinning many important applications, including search engine advertisement, website banner and pop-up ads, and ride-hailing. We study the i.i.d. OBM problem, where one side of the bipartition is fixed and known in advance, while nodes from the other side appear sequentially as i.i.d. realizations of an underlying … Read more

Joint Inventory and Revenue Management with Removal Decisions

We study the problem of a retailer that maximizes profit through joint replenishment, pricing and removal decisions. This problem is motivated by the observation that retailers usually retain rights to remove inventory from their network either by returning it to the suppliers or through liquidation in the face of random demand and capacity constraints. We … Read more

Payment Mechanisms for Electricity Markets with Uncertain Supply

This paper provides a framework for deriving payment mechanisms for intermittent, flexible and inflexible electricity generators who are dispatched according to the optimal solution of a stochastic program that minimizes the expected cost of generation plus deviation. The first stage corresponds to a pre-commitment decision, and the second stage corresponds to real-time generation that adapts … Read more