Dynamic programming and dimensionality in convex stochastic control
ArticleDownload View PDF
ArticleDownload View PDF
In this paper, we investigate two known solution approaches for set-valued optimization problems, both of which are based on so-called vectorization strategies. These strategies consist of deriving a parametric family of multi-objective optimization problems whose optimal solution sets approximate those of the original set-valued problem with arbitrary accuracy in a certain sense. Thus, these approaches … Read more
The problem considered is a multi-objective optimization problem, in which the goal is to find an optimal value of a vector function representing various criteria. The aim of this work is to develop an algorithm which utilizes the trust region framework with probabilistic model functions, able to cope with noisy problems, using inaccurate functions and … Read more
In this article, we present several examples of special nonlinear conjugate gradient directions for nonlinear (non-convex) multi-objective optimization. These directions provide a descent direction for the objectives, independent of the line-search. This way, we can provide an algorithm with simple, Armijo-like backtracking and prove convergence to first-order critical points. In contrast to other popular conjugate … Read more
In this note, we polynomially reduce an instance of the partition problem to a dynamic lot sizing problem, and show that solving the latter problem solves the former problem. By solving the dynamic program formulation of the dynamic lot sizing problem, we show that the instance of the partition problem can be solved with pseudo-polynomial … Read more
This paper presents a game-theoretical framework for data classification and network discovery, focusing on pairwise influences in multivariate choices. The framework consists of two complementary games in which individuals, connected through a signed weighted graph, exhibit network similarity. A voting rule captures the influence of an individual’s neighbors, categorized as attractive (friend-like) or repulsive (enemy-like), … Read more
In this paper, we introduce an approach for obtaining probabilistically guaranteed upper and lower bounds on the true optimal value of stopping problems. Bounds of existing simulation-and-regression approaches, such as those based on least squares Monte Carlo and information relaxation, are stochastic in nature and therefore do not come with a finite sample guarantee. Our … Read more
Dealing with uncertainty in optimization parameters is an important and longstanding challenge. Typically, uncertain parameters are predicted accurately, and then a deterministic optimization problem is solved. However, the decisions produced by this so-called predict-then-optimize procedure can be highly sensitive to uncertain parameters. In this work, we contribute to recent efforts in producing decision-focused predictions, i.e., … Read more
In this work we propose a general nonmonotone line-search method for nonconvex multi-objective optimization problems with convex constraints. At the \(k\)th iteration, the degree of nonmonotonicity is controlled by a vector \(\nu_{k}\) with nonnegative components. Different choices for \(\nu_{k}\) lead to different nonmonotone step-size rules. Assuming that the sequence \(\left\{\nu_{k}\right\}_{k\geq 0}\) is summable, and that … Read more
We introduce a framework to accelerate the convergence of gradient-based methods with online learning. The framework learns to scale the gradient at each iteration through an online learning algorithm and provably accelerates gradient-based methods asymptotically. In contrast with previous literature, where convergence is established based on worst-case analysis, our framework provides a strong convergence guarantee … Read more