Distributionally Robust Mechanism Design

We study a mechanism design problem where an indivisible good is auctioned to multiple bidders, for each of whom it has a private value that is unknown to the seller and the other bidders. The agents perceive the ensemble of all bidder values as a random vector governed by an ambiguous probability distribution, which belongs … Read more

From Data to Decisions: Distributionally Robust Optimization is Optimal

We study stochastic programs where the decision-maker cannot observe the distribution of the exogenous uncertainties but has access to a finite set of independent samples from this distribution. In this setting, the goal is to find a procedure that transforms the data to an estimate of the expected cost function under the unknown data-generating distribution, … Read more

Decomposition Algorithms for Distributionally Robust Optimization using Wasserstein Metric

We study distributionally robust optimization (DRO) problems where the ambiguity set is de ned using the Wasserstein metric. We show that this class of DRO problems can be reformulated as semi-in nite programs. We give an exchange method to solve the reformulated problem for the general nonlinear model, and a central cutting-surface method for the convex case, … Read more

Robust Multi-Period Vehicle Routing under Customer Order Uncertainty

In this paper, we study multi-period vehicle routing problems where the aim is to determine a minimum cost visit schedule and associated routing plan for each period using capacity-constrained vehicles. In our setting, we allow for customer service requests that are received dynamically over the planning horizon. In order to guarantee the generation of routing … Read more

An Analytical Study of Norms and Banach Spaces Induced by the Entropic Value-at-Risk

This paper addresses the Entropic Value-at-Risk (EVaR), a recently introduced coherent risk measure. It is demonstrated that the norms induced by EVaR induce the same Banach spaces, irrespective of the confidence level. Three spaces, called the primal, dual, and bidual entropic spaces, corresponding with EVaR are fully studied. It is shown that these spaces equipped … Read more

A successive linear programming algorithm with non-linear time series for the reservoir management problem

This paper proposes a multi-stage stochastic programming formulation based on affine decision rules for the reservoir management problem. Our approach seeks to find a release schedule that balances flood control and power generation objectives while considering realistic operating conditions as well as variable water head. To deal with the non-convexity introduced by the variable water … Read more

Optimized Bonferroni Approximations of Distributionally Robust Joint Chance Constraints

A distributionally robust joint chance constraint involves a set of uncertain linear inequalities which can be violated up to a given probability threshold $\epsilon$, over a given family of probability distributions of the uncertain parameters. A conservative approximation of a joint chance constraint, often referred to as a Bonferroni approximation, uses the union bound to … Read more

Decomposition Algorithms for Two-Stage Distributionally Robust Mixed Binary Programs

In this paper, we introduce and study a two-stage distributionally robust mixed binary problem (TSDR-MBP) where the random parameters follow the worst-case distribution belonging to an uncertainty set of probability distributions. We present a decomposition algorithm, which utilizes distribution separation procedure and parametric cuts within Benders’ algorithm or L-shaped method, to solve TSDR-MBPs with binary … Read more

Robust combinatorial optimization with knapsack uncertainty

We study in this paper min max robust combinatorial optimization problems for an uncertainty polytope that is defined by knapsack constraints, either in the space of the optimization variables or in an extended space. We provide exact and approximation algorithms that extend the iterative algorithms proposed by Bertismas and Sim (2003). We also study the … Read more

Distributionally Robust Stochastic Optimization with Dependence Structure

Distributionally robust stochastic optimization (DRSO) is a framework for decision-making problems under certainty, which finds solutions that perform well for a chosen set of probability distributions. Many different approaches for specifying a set of distributions have been proposed. The choice matters, because it affects the results, and the relative performance of different choices depend on … Read more