Robust Sensitivity Analysis for Linear Programming with Ellipsoidal Perturbation

Given an originally robust optimal decision and allowing perturbation parameters of the linear programming problem to run through a maximum uncertainty set controlled by a variable of perturbation radius, we do robust sensitivity analysis for the robust linear programming problem in two scenarios. One is to keep the original decision still robust optimal, the other … Read more

Robust combinatorial optimization with knapsack uncertainty

We study in this paper min max robust combinatorial optimization problems for an uncertainty polytope that is defined by knapsack constraints, either in the space of the optimization variables or in an extended space. We provide exact and approximation algorithms that extend the iterative algorithms proposed by Bertismas and Sim (2003). We also study the … Read more

Constraint Generation for Two-Stage Robust Network Flow Problem

In this paper, we propose new constraint generation algorithms for solving the two-stage robust minimum cost flow problem, a problem that arises from various applications such as transportation and logistics. In order to develop efficient algorithms under general polyhedral uncertainty set, we repeatedly exploit the network-flow structure to reformulate the two-stage robust minimum cost flow … Read more

Robust Combinatorial Optimization under Convex and Discrete Cost Uncertainty

In this survey, we discuss the state-of-the-art of robust combinatorial optimization under uncertain cost functions. We summarize complexity results presented in the literature for various underlying problems, with the aim of pointing out the connections between the different results and approaches, and with a special emphasis on the role of the chosen uncertainty sets. Moreover, … Read more

The Adaptive Robust Multi-Period Alternating Current Optimal Power Flow Problem

This paper jointly addresses two major challenges in power system operations: i) dealing with non-convexity in the power flow equations, and ii) systematically capturing uncertainty in renewable power availability and in active and reactive power consumption at load buses. To overcome these challenges, this paper proposes a two-stage adaptive robust optimization model for the multi-period … Read more

Distributionally robust simple integer recourse

The simple integer recourse (SIR) function of a decision variable is the expectation of the integer round-up of the shortage/surplus between a random variable with a known distribution and the decision variable. It is the integer analogue of the simple (continuous) recourse function in two stage stochastic linear programming. Structural properties and approximations of SIR … Read more

A Data-Driven Distributionally Robust Bound on the Expected Optimal Value of Uncertain Mixed 0-1 Linear Programming

This paper studies the expected optimal value of a mixed 0-1 programming problem with uncertain objective coefficients following a joint distribution. We assume that the true distribution is not known exactly, but a set of independent samples can be observed. Using the Wasserstein metric, we construct an ambiguity set centered at the empirical distribution from … Read more

Robust Combinatorial Optimization under Budgeted-Ellipsoidal Uncertainty

In the field of robust optimization uncertain data is modeled by uncertainty sets, i.e. sets which contain all relevant outcomes of the uncertain parameters. The complexity of the related robust problem depends strongly on the shape of the uncertainty set. Two popular classes of uncertainty are budgeted uncertainty and ellipsoidal uncertainty. In this paper we … Read more

Simplex QP-based methods for minimizing a conic quadratic objective over polyhedra

We consider minimizing a conic quadratic objective over a polyhedron. Such problems arise in parametric value-at-risk minimization, portfolio optimization, and robust optimization with ellipsoidal objective uncertainty; and they can be solved by polynomial interior point algorithms for conic quadratic optimization. However, interior point algorithms are not well-suited for branch-and-bound algorithms for the discrete counterparts of … Read more

Robust Optimization for Decision-making under Endogenous Uncertainty

This paper contemplates the use of robust optimization as a framework for addressing problems that involve endogenous uncertainty, i.e., uncertainty that is affected by the decision maker’s strategy. To that end, we extend generic polyhedral uncertainty sets typically considered in robust optimization into sets that depend on the actual decisions. We present the derivation of … Read more