Generalized Stochastic Frank-Wolfe Algorithm with Stochastic “Substitute” Gradient for Structured Convex Optimization

The stochastic Frank-Wolfe method has recently attracted much general interest in the context of optimization for statistical and machine learning due to its ability to work with a more general feasible region. However, there has been a complexity gap in the guaranteed convergence rate for stochastic Frank-Wolfe compared to its deterministic counterpart. In this work, … Read more

Probabilistic Envelope Constrained Multiperiod Stochastic Emergency Medical Services Location Model and Decomposition Scheme

This paper considers a multiperiod Emergency Medical Services (EMS) location problem and introduces two two-stage stochastic programming formulations that account for uncertainty about emergency demand. While the first model considers both a constraint on the probability of covering the realized emergency demand and minimizing the expected cost of doing so, the second one employs probabilistic … Read more

A two-stage stochastic optimization model for the bike-sharing allocation and rebalancing problem

The Bike-sharing allocation and rebalancing problem is the problem of determining the initial daily allocation of bikes to stations in a bike-sharing system composed of one depot and multiple capacitated stations, in which bikes can be rebalanced at a point in time during the day. Due to the uncertain demand in each station, we propose … Read more

Dynamic Scheduling of Home Health Care Patients to Medical Providers

Home care provides personalized medical care and social support to patients within their own home. Our work proposes a dynamic scheduling framework to assist in the assignment of patients to health practitioners (HPs) at a single home care agency. We model the decision of which patients to assign to HPs as a discrete-time Markov decision … Read more

Data-Driven Distributionally Robust Chance-Constrained Optimization with Wasserstein Metric

We study distributionally robust chance-constrained programming (DRCCP) optimization problems with data-driven Wasserstein ambiguity sets. The proposed algorithmic and reformulation framework applies to distributionally robust optimization problems subjected to individual as well as joint chance constraints, with random right-hand side and technology vector, and under two types of uncertainties, called uncertain probabilities and continuum of realizations. … Read more

Solving Stochastic and Bilevel Mixed-Integer Programs via a Generalized Value Function

We introduce a generalized value function of a mixed-integer program, which is simultaneously parameterized by its objective and right-hand side. We describe its fundamental properties, which we exploit through three algorithms to calculate it. We then show how this generalized value function can be used to reformulate two classes of mixed-integer optimization problems: two-stage stochastic … Read more

Data-Driven Chance Constrained Programs over Wasserstein Balls

We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the $1$-norm or the $\infty$-norm, the cone is the nonnegative … Read more

Multi-stage Stochastic Programming for Demand Response Optimization

The increase in the energy consumption puts pressure on natural resources and environment and results in a rise in the price of energy. This motivates residents to schedule their energy consumption through demand response mechanism. We propose a multi-stage stochastic programming model to schedule different kinds of electrical appliances under uncertain weather conditions and availability … Read more

Envelope Theorems for Multi-Stage Linear Stochastic Optimization

We propose a method to compute derivatives of multi-stage linear stochastic optimization problems with respect to parameters that influence the problem’s data. Our results are based on classical envelope theorems, and can be used in problems directly solved via their deterministic equivalents as well as in stochastic dual dynamic programming for which the derivatives of … Read more

On Distributionally Robust Chance Constrained Programs with Wasserstein Distance

This paper studies a distributionally robust chance constrained program (DRCCP) with Wasserstein ambiguity set, where the uncertain constraints should be satisfied with a probability at least a given threshold for all the probability distributions of the uncertain parameters within a chosen Wasserstein distance from an empirical distribution. In this work, we investigate equivalent reformulations and … Read more