Satisficing Models under Uncertainty

Satisficing, as an approach to decision-making under uncertainty, aims at achieving solutions that satisfy the problem’s constraints as well as possible. Mathematical optimization problems that are related to this form of decision-making include the P-model of Charnes and Cooper (1963). In this paper, we propose a general framework of satisficing decision criteria, and show a … Read more

Scenario Set Partition Dual Bounds for Multistage Stochastic Programming: A Hierarchy of Bounds and a Partition Sampling Approach

We consider multistage stochastic programming problems in which the random parameters have finite support, leading to optimization over a finite scenario set. We propose a hierarchy of bounds based on partitions of the scenario set into subsets of (nearly) equal cardinality. These expected partition (EP) bounds coincide with EGSO bounds provided by Sandikci et al. … Read more

Non-asymptotic confidence bounds for the optimal value of a stochastic program

We discuss a general approach to building non-asymptotic confidence bounds for stochastic optimization problems. Our principal contribution is the observation that a Sample Average Approximation of a problem supplies upper and lower bounds for the optimal value of the problem which are essentially better than the quality of the corresponding optimal solutions. At the same … Read more

Constrained Optimization with Low-Rank Tensors and Applications to Parametric Problems with PDEs

Low-rank tensor methods provide efficient representations and computations for high-dimensional problems and are able to break the curse of dimensionality when dealing with systems involving multiple parameters. We present algorithms for constrained nonlinear optimization problems that use low-rank tensors and apply them to optimal control of PDEs with uncertain parameters and to parametrized variational inequalities. … Read more

The stochastic vehicle routing problem, a literature review, part I: models

Building on the work of Gendreau, Laporte, and Seguin (1996), we review the past 20 years of scientific literature on stochastic vehicle routing problems (SVRP). The numerous variants of the problem that have been studied in the literature are described and categorized. Also a thorough review of solution methods applied to the SVRP is included … Read more

Risk-averse portfolio selection of renewable electricity generator investments in Brazil: An optimised multi-market commercialisation strategy

Investment decisions in renewable energy sources such as small hydro, wind power, biomass and solar are frequently made in the context of enormous uncertainty surrounding both intermittent generation and the highly volatile electricity spot prices that are used for clearing of trades. This paper presents a new portfolio-based approach for selecting long-term investments in small-scale … Read more

Joint dynamic probabilistic constraints with projected linear decision rules

We consider multistage stochastic linear optimization problems combining joint dynamic probabilistic constraints with hard constraints. We develop a method for projecting decision rules onto hard constraints of wait-and-see type. We establish the relation between the original (infinite dimensional) problem and approximating problems working with projections from different subclasses of decision policies. Considering the subclass of … Read more

Multistep stochastic mirror descent for risk-averse convex stochastic programs based on extended polyhedral risk measures

We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable confidence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochastic … Read more

On the Number of Stages in Multistage Stochastic Programs

Multistage stochastic programs are a viable modeling tool for sequential decisions conditional on information revealed at different points in time (stages). However, as the number of stages increases their applicability is soon halted by the curse of dimensionality. A typical, sometimes forced, alternative is to approximate stages by their expected values thus considering fewer stages … Read more

A characterization of Nash equilibrium for the games with random payoffs

We consider a two player bimatrix game where the entries of the payoff matrices are random variables. We formulate this problem as a chance-constrained game by considering that the payoff of each player is defined using a chance constraint. We consider the case where the entries of the payoff matrices are independent normal/Cauchy random variables. … Read more