A prediction-based approach for online dynamic radiotherapy scheduling

Patient scheduling is a difficult task as it involves dealing with stochastic factors such as an unknown arrival flow of patients. Scheduling radiotherapy treatments for cancer patients faces a similar problem. Curative patients need to start their treatment within the recommended deadlines, i.e., 14 or 28 days after their admission while reserving treatment capacity for … Read more

Two efficient gradient methods with approximately optimal stepsizes based on regularization models for unconstrained optimization

It is widely accepted that the stepsize is of great significance to gradient method. Two efficient gradient methods with approximately optimal stepsizes mainly based on regularization models are proposed for unconstrained optimization. More exactly, if the objective function is not close to a quadratic function on the line segment between the current and latest iterates, … Read more

Minkowski Centers via Robust Optimization: Computation and Applications

Centers of convex sets are geometric objects that have received extensive attention in the mathematical and optimization literature, both from a theoretical and practical standpoint. For instance, they serve as initialization points for many algorithms such as interior-point, hit-and-run, or cutting-planes methods. First, we observe that computing a Minkowski center of a convex set can be formulated as … Read more

Bounds for Multistage Mixed-Integer Distributionally Robust Optimization

Multistage mixed-integer distributionally robust optimization (DRO) forms a class of extremely challenging problems since their size grows exponentially with the number of stages. One way to model the uncertainty in multistage DRO is by creating sets of conditional distributions (the so-called conditional ambiguity sets) on a finite scenario tree and requiring that such distributions remain … Read more

An Efficient Tabu Search Algorithm for the Tool Indexing Problem

In this paper, we look at the tool indexing problem in which a single copy of each tool is allowed in the tool magazine. We develop problem specific methods to search the neighborhood efficiently and design a Tabu Search algorithm based on them. Computational experiments show that our algorithm is competent. CitationIndian Institute of Management … Read more

Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost

The One-Dimensional Cutting Stock Problem with Setup Cost (CSP-S) is a cutting problem that seeks a cutting plan with a minimum number of objects and a minimum number of different patterns. This problem gains relevance in manufacturing settings, where time consuming operations to set up the knives of the cutting machine for the new patterns … Read more

A superlinearly convergent subgradient method for sharp semismooth problems

Subgradient methods comprise a fundamental class of nonsmooth optimization algorithms. Classical results show that certain subgradient methods converge sublinearly for general Lipschitz convex functions and converge linearly for convex functions that grow sharply away from solutions. Recent work has moreover extended these results to certain nonconvex problems. In this work we seek to improve the … Read more

A semidefinite programming approach for the projection onto the cone of negative semidefinite symmetric tensors with applications to solid mechanics

We propose an algorithm for computing the projection of a symmetric second-order tensor onto the cone of negative semidefinite symmetric tensors with respect to the inner product defined by an assigned positive definite symmetric fourth-order tensor C. The projection problem is written as a semidefinite programming problem and an algorithm based on a primal-dual path-following … Read more

New Algorithm to Solve Mixed Integer Quadratically Constrained Quadratic Programming Problems Using Piecewise Linear Approximation

Techniques and methods of linear optimization underwent a significant improvement in the 20th century which led to the development of reliable mixed integer linear programming (MILP) solvers. It would be useful if these solvers could handle mixed integer nonlinear programming (MINLP) problems. Piecewise linear approximation (PLA) is one of most popular methods used to transform … Read more

Distributional robustness and inequity mitigation in disaster preparedness of humanitarian operations

We study a predisaster relief network design problem with uncertain demands. The aim is to determine the prepositioning and reallocation of relief supplies. Motivated by the call of the International Federation of Red Cross and Red Crescent Societies (IFRC) to leave no one behind, we consider three important practical aspects of humanitarian operations: shortages, equity, … Read more