Safely Learning Dynamical Systems from Short Trajectories

A fundamental challenge in learning to control an unknown dynamical system is to reduce model uncertainty by making measurements while maintaining safety. In this work, we formulate a mathematical definition of what it means to safely learn a dynamical system by sequentially deciding where to initialize the next trajectory. In our framework, the state of … Read more

Homogeneous polynomials and spurious local minima on the unit sphere

We consider forms on the Euclidean unit sphere. We obtain obtain a simple and complete characterization of all points that satisfies the standard second-order necessary condition of optimality. It is stated solely in terms of the value of (i) f, (ii) the norm of its gradient, and (iii) the first two smallest eigenvalues of its … Read more

Optimization under rare chance constraints

Chance constraints provide a principled framework to mitigate the risk of high-impact extreme events by modifying the controllable properties of a system. The low probability and rare occurrence of such events, however, impose severe sampling and computational requirements on classical solution methods that render them impractical. This work proposes a novel sampling-free method for solving … Read more

The Moment-SOS hierarchy and the Christoffel-Darboux kernel

We consider the global minimization of a polynomial on a compact set B. We show that each step of the Moment-SOS hierarchy has a nice and simple interpretation that complements the usual one. Namely, it computes coefficients of a polynomial in an orthonormal basis of $L^2(B,\mu)$ where $\mu$ is an arbitrary reference measure whose support … Read more

A Distributionally-Robust Service Center Location Problem with Decision Dependent Demand Induced from a Maximum Attraction Principle

We establish and analyze a service center location model with a simple but novel decision-dependent demand induced from a maximum attrac- tion principle. The model formulations are investigated in the distributionally- robust optimization framework. A statistical model that is based on the max- imum attraction principle for estimating customer demand and utility gain from service … Read more

An Alternating Method for Cardinality-Constrained Optimization: A Computational Study for the Best Subset Selection and Sparse Portfolio Problems

Cardinality-constrained optimization problems are notoriously hard to solve both in theory and practice. However, as famous examples such as the sparse portfolio optimization and best subset selection problems show, this class is extremely important in real-world applications. In this paper, we apply a penalty alternating direction method to these problems. The key idea is to … Read more

Affine Decision Rule Approximation to Immunize against Demand Response Uncertainty in Smart Grids’ Capacity Planning

Generation expansion planning (GEP) is a classical problem that determines an optimal investment plan for existing and future electricity generation technologies. GEP is a computationally challenging problem, as it typically corresponds to a very large-scale problem that contains several sources of uncertainties. With the advent of demand response (DR) as a reserved capacity in modern … Read more

Capacity requirements and demand management strategies in meal delivery

Online restaurant aggregators have experienced significant sales growth in recent years, driving demand for meal delivery in the US. Meal delivery logistics is quite challenging, primarily due to the difficulty in managing the supply of delivery resources to satisfy dynamic and uncertain customer demand under very tight time constraints. In this paper, we study several … Read more

A Polyhedral Study for the Cubic Formulation of the Unconstrained Traveling Tournament Problem

We consider the unconstrained traveling tournament problem, a sports timetabling problem that minimizes traveling of teams. Since its introduction about 20 years ago, most research was devoted to modeling and reformulation approaches. In this paper we carry out a polyhedral study for the cubic integer programming formulation by establishing the dimension of the integer hull … Read more

Compact mixed-integer programming relaxations in quadratic optimization

We present a technique for producing valid dual bounds for nonconvex quadratic optimization problems. The approach leverages an elegant piecewise linear approximation for univariate quadratic functions due to Yarotsky, formulating this (simple) approximation using mixed-integer programming (MIP). Notably, the number of constraints, binary variables, and auxiliary continuous variables used in this formulation grows logarithmically in … Read more