Analysis of a Class of Minimization Problems Lacking Lower Semicontinuity

The minimization of non-lower semicontinuous functions is a difficult topic that has been minimally studied. Among such functions is a Heaviside composite function that is the composition of a Heaviside function with a possibly nonsmooth multivariate function. Unifying a statistical estimation problem with hierarchical selection of variables and a sample average approximation of composite chance … Read more

On achieving strong necessary second-order properties in nonlinear programming

Second-order necessary or sufficient optimality conditions for nonlinear programming are usually defined by means of the positive (semi-)definiteness of a quadratic form, or a maximum of quadratic forms, over the critical cone. However, algorithms for finding such second-order stationary points are currently unknown. Typically, an algorithm with a second-order property approximates a primal-dual point such … Read more

Full-low evaluation methods for bound and linearly constrained derivative-free optimization

Derivative-free optimization (DFO) consists in finding the best value of an objective function without relying on derivatives. To tackle such problems, one may build approximate derivatives, using for instance finite-difference estimates. One may also design algorithmic strategies that perform space exploration and seek improvement over the current point. The first type of strategy often provides … Read more

Healthcare Operations Research and Management under Pandemics: a Review

This literature review sought to identify the role of Operations Research and Management (OR-and-OM) in the Healthcare Systems (HS) decision/policy making processes that have undergone a remarkable transformation when faced with pandemics, especially during the COVID-19 era. In this study, we investigate OR models and OM techniques that facilitate clinical decision-making with short- and long-term … Read more

A Computational Study for Piecewise Linear Relaxations of Mixed-Integer Nonlinear Programs

Solving mixed-integer nonlinear problems by means of piecewise linear relaxations can be a reasonable alternative to the commonly used spatial branch-and-bound. These relaxations have been modeled by various mixed-integer models in recent decades. The idea is to exploit the availability of mature solvers for mixed-integer problems. In this work, we compare different reformulations in terms … Read more

Optimization and Simulation for the Daily Operation of Renewable Energy Communities

Renewable Energy Communities (RECs) are an important building block for the decarbonization of the energy sector. The concept of RECs allows individual consumers to join together in local communities to generate, store, consume and sell renewable energy. A major benefit of this collective approach is a better match between supply and demand profiles, and thus, … Read more

K-Shortest Simple Paths Using Biobjective Path Search

In this paper we introduce a new algorithm for the k-Shortest Simple Paths (k-SSP) problem with an asymptotic running time matching the state of the art from the literature. It is based on a black-box algorithm due to Roddity and Zwick that solves at most 2k instances of the Second Shortest Simple Path (2-SSP) problem … Read more

Continuous Selections of Solutions to Parametric Variational Inequalities

This paper studies the existence of a (Lipschitz) continuous (single-valued) solution function of parametric variational inequalities under functional and constraint perturbations. At the most elementary level, this issue can be explained from classical parametric linear programming and its resolution by the parametric simplex method, which computes a solution trajectory of the problem when the objective … Read more

Solving Hard Bi-objective Knapsack Problems Using Deep Reinforcement Learning

We study a class of bi-objective integer programs known as bi-objective knapsack problems (BOKPs). Our research focuses on the development of innovative exact and approximate solution methods for BOKPs by synergizing algorithmic concepts from two distinct domains: multi-objective integer programming and (deep) reinforcement learning. While novel reinforcement learning techniques have been applied successfully to single-objective … Read more

Functions associated with the nonconvex second-order cone

The nonconvex second-order cone (nonconvex SOC for short) is a nonconvex extension to the convex second-order cone, in the sense that it consists of any vector divided into two sub-vectors for which the Euclidean norm of the first sub-vector is at least as large as the Euclidean norm of the second sub-vector. This cone can … Read more