Mixed integer formulations for a coupled lot-scheduling and vehicle routing problem in furniture settings

We propose and analyze two mathematical programming models for a production, inventory, distribution and routing problem considering real and relevant features from the furniture industry, such as production sequence-dependent setup times, heterogeneous fleet of vehicles, routes extending over one or more periods of the production planning horizon, multiple time windows and customers’ deadlines, among others. … Read more

Run-and-Inspect Method for Nonconvex Optimization and Global Optimality Bounds for R-Local Minimizers

Many optimization algorithms converge to stationary points. When the underlying problem is nonconvex, they may get trapped at local minimizers and occasionally stagnate near saddle points. We propose the Run-and-Inspect Method, which adds an “inspect” phase to existing algorithms that helps escape from non-global stationary points. The inspection samples a set of points in a … Read more

The Strength of Multi-row Aggregation Cuts for Sign-pattern Integer Programs

In this paper, we study the strength of aggregation cuts for sign-pattern integer programs (IPs). Sign-pattern IPs are a generalization of packing IPs and are of the form {x \in Z^n | Ax = 0} where for a given column j, A_{ij} is either non-negative for all i or non-positive for all i. Our first … Read more

Relaxing kink qualifications and proving convergence rates in piecewise smooth optimization

Abstract. In the paper [9] we derived first order (KKT) and second order (SSC) optimality conditions for functions defined by evaluation programs involving smooth elementals and absolute values. In that analysis, a key assumption on the local piecewise linearization was the Linear Independence Kink Qualification (LIKQ), a generalization of the Linear Independence Constraint Qualification (LICQ) … Read more

Nonoverlapping Domain Decomposition for Optimal Control Problems governed by Semilinear Models for Gas Flow in Networks

We consider optimal control problems for gas flow in pipeline networks. The equations of motion are taken to be represented by a first-order system of hyperbolic semilinear equations derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a network and introduce a tailored time discretization thereof. In order … Read more

Multi-objective risk-averse two-stage stochastic programming problems

We consider a multi-objective risk-averse two-stage stochastic programming problem with a multivariate convex risk measure. We suggest a convex vector optimization formulation with set-valued constraints and propose an extended version of Benson’s algorithm to solve this problem. Using Lagrangian duality, we develop scenario-wise decomposition methods to solve the two scalarization problems appearing in Benson’s algorithm. … Read more

Adaptive Fista

In this paper we propose an adaptively extrapolated proximal gradient method, which is based on the accelerated proximal gradient method (also known as FISTA), however we locally optimize the extrapolation parameter by carrying out an exact (or inexact) line search. It turns out that in some situations, the proposed algorithm is equivalent to a class … Read more

An Accelerated Communication-Efficient Primal-Dual Optimization Framework for Structured Machine Learning

Distributed optimization algorithms are essential for training machine learning models on very large-scale datasets. However, they often suffer from communication bottlenecks. Confronting this issue, a communication-efficient primal-dual coordinate ascent framework (CoCoA) and its improved variant CoCoA+ have been proposed, achieving a convergence rate of $\mathcal{O}(1/t)$ for solving empirical risk minimization problems with Lipschitz continuous losses. … Read more

On the use of third-order models with fourth-order regularization for unconstrained optimization

In a recent paper, it was shown that, for the smooth unconstrained optimization problem, worst-case evaluation complexity $O(\epsilon^{-(p+1)/p})$ may be obtained by means of algorithms that employ sequential approximate minimizations of p-th order Taylor models plus (p + 1)-th order regularization terms. The aforementioned result, which assumes Lipschitz continuity of the p-th partial derivatives, generalizes … Read more

Meta-Modeling to Assess the Possible Future of Paris Agreement

In the meta-modeling approach one builds a numerically tractable dynamic optimization or game model in which the parameters are identified through statistical emulation of a detailed large scale numerical simulation model. In this paper we show how this approach can be used to assess the economic impacts of possible climate policies compatible with the Paris … Read more