Smoothing l1-exact penalty method for intrinsically constrained Riemannian optimization problems

This paper deals with the Constrained Riemannian Optimization (CRO) problem, which involves minimizing a function subject to equality and inequality constraints on Riemannian manifolds. The study aims to advance optimization theory in the Riemannian setting by presenting and analyzing a penalty-type method for solving CRO problems. The proposed approach is based on techniques that involve … Read more

Unifying restart accelerated gradient and proximal bundle methods

This paper presents a novel restarted version of Nesterov’s accelerated gradient method and establishes its optimal iteration-complexity for solving convex smooth composite optimization problems. The proposed restart accelerated gradient method is shown to be a specific instance of the accelerated inexact proximal point framework introduced in “An accelerated hybrid proximal extragradient method for convex optimization … Read more

Efficient LP warmstarting for linear modifications of the constraint matrix

We consider the problem of computing the optimal solution and objective of a linear program under linearly changing linear constraints. The problem studied is given by $\min c^t x \text{ s.t } Ax + \lambda Dx \leq b$ where $\lambda$ belongs to a set of predefined values $\Lambda$. Based on the information given by a … Read more

Improved Approximation Algorithms for Low-Rank Problems Using Semidefinite Optimization

Inspired by the impact of the Goemans-Williamson algorithm on combinatorial optimization, we construct an analogous relax-then-sample strategy for low-rank optimization problems. First, for orthogonally constrained quadratic optimization problems, we derive a semidefinite relaxation and a randomized rounding scheme, which obtains provably near-optimal solutions, mimicking the blueprint from Goemans and Williamson for the Max-Cut problem. We … Read more

Bi-Parameterized Two-Stage Stochastic Min-Max and Min-Min Mixed Integer Programs

We introduce two-stage stochastic min-max and min-min integer programs with bi-parameterized recourse (BTSPs), where the first-stage decisions affect both the objective function and the feasible region of the second-stage problem. To solve these programs efficiently, we introduce Lagrangian-integrated L-shaped (\(L^2\)) methods, which guarantee exact solutions when the first-stage decisions are pure binary. For mixed-binary first-stage … Read more

High-Probability Polynomial-Time Complexity of Restarted PDHG for Linear Programming

The restarted primal-dual hybrid gradient method (rPDHG) is a first-order method that has recently received significant attention for its computational effectiveness in solving linear program (LP) problems. Despite its impressive practical performance, the theoretical iteration bounds for rPDHG can be exponentially poor. To shrink this gap between theory and practice, we show that rPDHG achieves … Read more

Proximity results in convex mixed-integer programming

We study proximity (resp. integrality gap), that is, the distance (resp. difference) between the optimal solutions (resp. optimal values) of convex integer programs (IP) and the optimal solutions (resp. optimal values) of their continuous relaxations. We show that these values can be upper bounded in terms of the recession cone of the feasible region of … Read more

Insights into the computational complexity of the single-source capacitated facility location problem with customer preferences

Single-source capacitated facility location problems (SSCFLPs) are well known in the operations research literature. A set of facilities is opened and each customer is assigned to exactly one open facility so that the capacity at each facility is respected. This customer assignment, however, deprives customers from choosing facilities according to their individual preferences. If customers … Read more

Two-Stage Distributionally Robust Optimization: Intuitive Understanding and Algorithm Development from the Primal Perspective

In this paper, we study the two-stage distributionally robust optimization (DRO) problem from the primal perspective. Unlike existing approaches, this perspective allows us to build a deeper and more intuitive understanding on DRO, to leverage classical and well established solution methods and to develop a general and fast decomposition algorithm (and its variants), and to … Read more