A SQP type method for constrained multiobjective optimization

We propose an SQP type method for constrained nonlinear multiobjective optimization. The proposed algorithm maintains a list of nondominated points that is improved both for spread along the Pareto front and optimality by solving singleobjective constrained optimization problems. Under appropriate differentiability assumptions we discuss convergence to local optimal Pareto points. We provide numerical results for … Read more

An Asynchronous Mini-Batch Algorithm for Regularized Stochastic Optimization

Mini-batch optimization has proven to be a powerful paradigm for large-scale learning. However, the state of the art parallel mini-batch algorithms assume synchronous operation or cyclic update orders. When worker nodes are heterogeneous (due to different computational capabilities or different communication delays), synchronous and cyclic operations are inefficient since they will leave workers idle waiting … Read more

Probabilistic optimization via approximate p-efficient points and bundle methods

For problems when decisions are taken prior to observing the realization of underlying random events, probabilistic constraints are an important modelling tool if reliability is a concern. A key concept to numerically dealing with probabilistic constraints is that of p-efficient points. By adopting a dual point of view, we develop a solution framework that includes … Read more

Stronger Multi-Commodity Flow Formulations of the (Capacitated) Sequential Ordering Problem

The “sequential ordering problem” (SOP) is the generalisation of the asymmetric travelling salesman problem in which there are precedence relations between pairs of nodes. Hernández & Salazar introduced a “multi-commodity flow” (MCF) formulation for a generalisation of the SOP in which the vehicle has a limited capacity. We strengthen this MCF formulation by fixing variables … Read more

$\varepsilon- Subdifferential of Set-valued Map and Its Application

In this paper, firstly, the concept of $\varepsilon-$strictly efficient subdifferential for set-valued map is introduced in Hausdorff locally convex topological vector spaces. Secondly, a characterization of this subdifferential by scalarization and the generalized $\varepsilon-$ Moreau-Rockafellar type theorem for set-valued maps are established. Finally, the necessary optimality condition of the constraint set-valued optimization problem for $\varepsilon-$ … Read more

On the Step Size of Symmetric Alternating Directions Method of Multipliers

The alternating direction method of multipliers (ADMM) is an application of the Douglas-Rachford splitting method; and the symmetric version of ADMM which updates the Lagrange multiplier twice at each iteration is an application of the Peaceman-Rachford splitting method. Sometimes the symmetric ADMM works empirically; but theoretically its convergence is not guaranteed. It was recently found … Read more

A MAX-CUT formulation of 0/1 programs

We consider the linear or quadratic 0/1 program \[P:\quad f^*=\min\{ c^Tx+x^TFx : \:A\,x =\b;\:x\in\{0,1\}^n\},\] for some vectors $c\in R^n$, $b\in Z^m$, some matrix $A\in Z^{m\times n}$ and some real symmetric matrix $F\in R^{n\times n}$. We show that $P$ can be formulated as a MAX-CUT problem whose quadratic form criterion is explicit from the data of … Read more

A Constraint-reduced Algorithm for Semidefinite Optimization Problems using HKM and AHO directions

We develop a new constraint-reduced infeasible predictor-corrector interior point method for semidefinite programming, and we prove that it has polynomial global convergence and superlinear local convergence. While the new algorithm uses HKM direction in predictor step, it adopts AHO direction in corrector step to obtain faster approach to the central path. In contrast to the … Read more

A New Method for Optimizing a Linear Function over the Efficient Set of a Multiobjective Integer Program

We present a new algorithm for optimizing a linear function over the set of efficient solutions of a multiobjective integer program MOIP. The algorithm’s success relies on the efficiency of a new algorithm for enumerating the nondominated points of a MOIP, which is the result of employing a novel criterion space decomposition scheme which (1) … Read more

Global convergence rate analysis of unconstrained optimization methods based on probabilistic models

We present global convergence rates for a line-search method which is based on random first-order models and directions whose quality is ensured only with certain probability. We show that in terms of the order of the accuracy, the evaluation complexity of such a method is the same as its counterparts that use deterministic accurate models; … Read more