Improved compact formulations for graph partitioning in sparse graphs

Given a graph $G=(V,E)$ where $|V|=n$ and $|E|=m$. Graph partitioning problems on $G$ are to find a partition of the vertices in $V$ into clusters satisfying several additional constraints in order to minimize or maximize the number (or the weight) of the edges whose endnodes do not belong to the same cluster. These problems are … Read more

Polyhedral studies of vertex coloring problems: The standard formulation

Despite the fact that many vertex coloring problems are polynomially solvable on certain graph classes, most of these problems are not “under control” from a polyhedral point of view. The equivalence between optimization and separation suggests the existence of integer programming formulations for these problems whose associated polytopes admit elegant characterizations. In this work we … Read more

Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models

The worst-case evaluation complexity for smooth (possibly nonconvex) unconstrained optimization is considered. It is shown that, if one is willing to use derivatives of the objective function up to order $p$ (for $p\geq 1$) and to assume Lipschitz continuity of the $p$-th derivative, then an $\epsilon$-approximate first-order critical point can be computed in at most … Read more

The Time Dependent Traveling Salesman Planning Problem in Controlled Airspace

The integration of Unmanned Aircraft Systems (UAS) into civil airspace is one of the most challenging problems for the automation of the Controlled Airspace, and the optimization of the UAS route is a key step for this process. In this paper, we optimize the planning phase of a UAS mission that consists of departing from … Read more

Solving Vertex Coloring Problems as Maximum Weight Stable Set Problems

In Vertex Coloring Problems, one is required to assign a color to each vertex of an undirected graph in such a way that adjacent vertices receive different colors, and the objective is to minimize the cost of the used colors. In this work we solve four different coloring problems formulated as Maximum Weight Stable Set … Read more

Min-max-min Robust Combinatorial Optimization

The idea of k-adaptability in two-stage robust optimization is to calculate a fixed number k of second-stage policies here-and-now. After the actual scenario is revealed, the best of these policies is selected. This idea leads to a min-max-min problem. In this paper, we consider the case where no first stage variables exist and propose to … Read more

On Solving L-SR1 Trust-Region Subproblems

In this article, we consider solvers for large-scale trust-region subproblems when the quadratic model is defined by a limited-memory symmetric rank-one (L-SR1) quasi-Newton matrix. We propose a solver that exploits the compact representation of L-SR1 matrices. Our approach makes use of both an orthonormal basis for the eigenspace of the L-SR1 matrix and the Sherman- … Read more

A Distributionally-robust Approach for Finding Support Vector Machines

The classical SVM is an optimization problem minimizing the hinge losses of mis-classified samples with the regularization term. When the sample size is small or data has noise, it is possible that the classifier obtained with training data may not generalize well to pop- ulation, since the samples may not accurately represent the true population … Read more

Second-Order Cone Programming for P-Spline Simulation Metamodeling

This paper approximates simulation models by B-splines with a penalty on high-order finite differences of the coefficients of adjacent B-splines. The penalty prevents overfitting. The simulation output is assumed to be nonnegative. The nonnegative spline simulation metamodel is casted as a second-order cone programming model, which can be solved efficiently by modern optimization techniques. The … Read more

A Stochastic Optimization Model for Designing Last Mile Relief Networks

In this study, we introduce a distribution network design problem that determines the locations and capacities of the relief distribution points in the last mile network, while considering demand- and network-related uncertainties in the post-disaster environment. The problem addresses the critical concerns of relief organizations in designing last mile networks, which are providing accessible and … Read more