A Complete Characterization of the Gap between Convexity and SOS-Convexity

Our first contribution in this paper is to prove that three natural sum of squares (sos) based sufficient conditions for convexity of polynomials via the definition of convexity, its first order characterization, and its second order characterization are equivalent. These three equivalent algebraic conditions, henceforth referred to as sos-convexity, can be checked by semidefinite programming … Read more

n-step Conic Mixed Integer Rounding Inequalities

We introduce the n-step conic MIR inequalities for the so-called polyhedral second-order conic (PSOC) mixed integer sets. PSOC sets arise in the polyhedral reformulation of the second-order conic mixed integer programs. Moreover, they are an equivalent representation for any mixed integer set defined by two linear constraints. The simple conic MIR inequalities of Atamtürk and … Read more

Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of … Read more

Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of … Read more

Inexact Restoration method for Derivative-Free Optimization with smooth constraints

A new method is introduced for solving constrained optimization problems in which the derivatives of the constraints are available but the derivatives of the objective function are not. The method is based on the Inexact Restoration framework, by means of which each iteration is divided in two phases. In the first phase one considers only … Read more

Algorithmic aspects of sums of hermitian squares of noncommutative polynomials

This paper presents an algorithm and its implementation in the software package NCSOStools for finding sums of hermitian squares and commutators decompositions for polynomials in noncommuting variables. The algorithm is based on noncommutative analogs of the classical Gram matrix method and the Newton polytope method, which allows us to use semidefinite programming. Throughout the paper … Read more

Global optimization of pipe networks by the interval analysis approach: the Belgium network case

We show that global optimization techniques, based on interval analysis and constraint propagation, succeed in solving the classical problem of optimization of the Belgium gas network. CitationPublished as Inria Research report RR-7796, November 2011.ArticleDownload View PDF

Scheduling co-operating stacking cranes with predetermined container sequences

Crane scheduling in container terminals is known as a difficult optimization problem that has become even more challenging in recent years with the proliferation of multi-gantry automated stacking cranes. In this paper we present an efficient algorithm solving a subproblem arising in this context, namely deciding the priority of cranes after transportation tasks have been … Read more

Sobolev Seminorm of Quadratic Functions with Applications to Derivative-Free Optimization

This paper studies the $H^1$ Sobolev seminorm of quadratic functions. The research is motivated by the least-norm interpolation that is widely used in derivative-free optimization. We express the $H^1$ seminorm of a quadratic function explicitly in terms of the Hessian and the gradient when the underlying domain is a ball. The seminorm gives new insights … Read more

Hybridizations of GRASP with path-relinking

A greedy randomized adaptive search procedure (GRASP) is a metaheuristic for combinatorial optimization. GRASP heuristics are multistart procedures which apply local search to a set of starting solutions generated with a randomized greedy algorithm or semi-greedy method. The best local optimum found over the iterations is returned as the heuristic solution. Path-relinking is a search … Read more