Multi-target Linear-quadratic control problem: semi-infinite interval

We consider multi-target linear-quadratic control problem on semi-infinite interval. We show that the problem can be reduced to a simple convex optimization problem on the simplex. CitationTo appear in Mathematical Problems in Engineering 2012 ArticleDownload View PDF

Compressive Sensing Based High Resolution Channel Estimation for OFDM System

Orthogonal frequency division multiplexing (OFDM) is a technique that will prevail in the next generation wireless communication. Channel estimation is one of the key challenges in OFDM, since high-resolution channel estimation can significantly improve the equalization at the receiver and consequently enhance the communication performances. In this paper, we propose a system with an asymmetric … Read more

On the O(1/t) convergence rate of alternating direction method

The old alternating direction method (ADM) has found many new applications recently, and its empirical efficiency has been well illustrated in various fields. However, the estimate of ADM’s convergence rate remains a theoretical challenge for a few decades. In this note, we provide a uniform proof to show the O(1/t) convergence rate for both the … Read more

Optimal synthesis in the Reeds and Shepp problem with a free final direction

We consider a time-optimal problem for the Reeds and Shepp model describing a moving point on a plane, with a free final direction of velocity. Using Pontryagin Maximum Principle, we obtain all types of extremals and, analysing them and discarding nonoptimal ones, construct the optimal synthesis. ArticleDownload View PDF

An inexact accelerated proximal gradient method for large scale linearly constrained convex SDP

The accelerated proximal gradient (APG) method, first proposed by Nesterov, and later refined by Beck and Teboulle, and studied in a unifying manner by Tseng has proven to be highly efficient in solving some classes of large scale structured convex optimization (possibly nonsmooth) problems, including nuclear norm minimization problems in matrix completion and $l_1$ minimization … Read more

A two-phase method for selecting IMRT treatment beam angles: Branch-and-Prune and local neighborhood search

This paper presents a new two-phase solution approach to the beam angle and fluence map optimization problem in Intensity Modulated Radiation Therapy (IMRT) planning. We introduce Branch-and-Prune (B&P) to generate a robust feasible solution in the first phase. A local neighborhood search algorithm is developed to find a local optimal solution from the Phase I … Read more

An FPTAS for Optimizing a Class of Low-Rank Functions Over a Polytope

We present a fully polynomial time approximation scheme (FPTAS) for optimizing a very general class of nonlinear functions of low rank over a polytope. Our approximation scheme relies on constructing an approximate Pareto-optimal front of the linear functions which constitute the given low-rank function. In contrast to existing results in the literature, our approximation scheme … Read more

A General Framework for Designing Approximation Schemes for Combinatorial Optimization Problems with Many Objectives Combined Into One

In this paper, we present a general framework for designing approximation schemes for combinatorial optimization problems in which the objective function is a combination of more than one function. Examples of such problems include those in which the objective function is a product or ratio of two linear functions, parallel machine scheduling problems with the … Read more

Lower bounds for Chvátal-Gomory style operators

Valid inequalities or cutting planes for (mixed-) integer programming problems are an essential theoretical tool for studying combinatorial properties of polyhedra. They are also of utmost importance for solving optimization problems in practice; in fact any modern solver relies on several families of cutting planes. The Chvátal-Gomory procedure, one such approach, has a peculiarity that … Read more

Strong Branching Inequalities for Convex Mixed Integer Nonlinear Programs

Strong branching is an effective branching technique that can significantly reduce the size of the branch-and-bound tree for solving Mixed Integer Nonlinear Programming (MINLP) problems. The focus of this paper is to demonstrate how to effectively use discarded information from strong branching to strengthen relaxations of MINLP problems. Valid inequalities such as branching-based linearizations, various … Read more