Security-constrained transmission planning: A mixed-integer disjunctive approach

We extend a static mixed intger diajunctive (MID) transmission expansion planning model so as to deal with circuit contingency criterion. The model simultaneously represents the network constraints for base case and each selected circuit contingency. The MID approach aloows a commercial optimization solver to achieve and prove solution aptimiality. The proposed approach is applied to … Read more

Stochastic p-Robust Location Problems

Many objectives have been proposed for optimization under uncertainty. The typical stochastic programming objective of minimizing expected cost may yield solutions that are inexpensive in the long run but perform poorly under certain realizations of the random data. On the other hand, the typical robust optimization objective of minimizing maximum cost or regret tends to … Read more

Aggregation in Stochastic Dynamic Programming

We present a general aggregation method applicable to all finite-horizon Markov decision problems. States of the MDP are aggregated into macro-states based on a pre-selected collection of “distinguished” states which serve as entry points into macro-states. The resulting macro-problem is also an MDP, whose solution approximates an optimal solution to the original problem. The aggregation … Read more

A fictitious play approach to large-scale optimization

In this paper we investigate the properties of the sampled version of the fictitious play algorithm, familiar from game theory, for games with identical payoffs, and propose a heuristic based on fictitious play as a solution procedure for discrete optimization problems of the form $\max\{u(y):y=(y^1,\ldots,y^n)\in\setY^1\times\cdots\times\setY^n\}$, i.e., in which the feasible region is a Cartesian product … Read more

On cost matrices with two and three distinct values of Hamiltonian paths and cycles

Polynomially testable characterization of cost matrices associated with a complete digraph on $n$ nodes such that all the Hamiltonian cycles (tours) have the same cost is well known. Tarasov~\cite{TARA81} obtained a characterization of cost matrices where tour costs take two distinct values. We provide a simple alternative characterization of such cost matrices that can be … Read more

Symmetry Points of Convex Set: Basic Properties and Computational Complexity

Given a convex body S and a point x \in S, let sym(x,S) denote the symmetry value of x in S: sym(x,S):= max{t : x + t(x – y) \in S for every y \in S}, which essentially measures how symmetric S is about the point x, and define sym(S):=\max{sym(x,S) : x \in S }. … Read more

Recovering Risk-Neutral Probability Density Functions from Options Prices using Cubic Splines

We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting optimization problem, used to invert the data and … Read more

Subspace trust-region methods for large bound-constrained nonlinear equations

Trust-region methods for solving large bound-constrained nonlinear systems are considered. They allow for spherical or elliptical trust-regions where the search of an approximate solution is restricted to a low dimensional space. A general formulation for these methods is introduced and global and superlinear/quadratic convergence is shown under standard assumptions. Viable approaches for implementation in conjunction … Read more

Convergence analysis of a primal-dual interior-point method for nonlinear programming

We analyze a primal-dual interior-point method for nonlinear programming. We prove the global convergence for a wide class of problems under the standard assumptions on the problem. CitationTechnical Report ORFE-04-07, Department of ORFE, Princeton University, Princeton, NJ 08544ArticleDownload View PDF

A primal-dual nonlinear rescaling method with dynamic scaling parameter update

In this paper we developed a general primal-dual nonlinear rescaling method with dynamic scaling parameter update (PDNRD) for convex optimization. We proved the global convergence, established 1.5-Q-superlinear rate of convergence under the standard second order optimality conditions. The PDNRD was numerically implemented and tested on a number of nonlinear problems from COPS and CUTE sets. … Read more