Polynomiality of an inexact infeasible interior point algorithm for semidefinite programming

In this paper we present a primal-dual inexact infeasible interior-point algorithm for semidefinite programming problems (SDP). This algorithm allows the use of search directions that are calculated from the defining linear system with only moderate accuracy, and our analysis does not require feasibility to be maintained even if the initial iterate happened to be a … Read more

NLPQLP: A New Fortran Implementation of a Sequential Quadratic Programming Algorithm

The Fortran subroutine NLPQLP solves smooth nonlinear programming problems and is an extension of the code NLPQL. The new version is specifically tuned to run under distributed systems. A new input parameter l is introduced for the number of parallel machines, that is the number of function calls to be executed simultaneously. In case of … Read more

Constructing Approximations to the Efficient Set of Convex Quadratic Multiobjective Problems

In multicriteria optimization, several objective functions have to be minimized simultaneously. For this kind of problem, no single solution can adequately represent the whole set of optimal points. We propose a new efficient method for approximating the solution set of a convex quadratic multiobjective programming problem. The method is based on a warm-start interior point … Read more

The Empirical Behavior of Sampling Methods for Stochastic Programming

We investigate the quality of solutions obtained from sample-average approximations to two-stage stochastic linear programs with recourse. We use a recently developed software tool executing on a computational grid to solve many large instances of these problems, allowing us to obtain high-quality solutions and to verify optimality and near-optimality of the computed solutions in various … Read more

A New Self-Dual Embedding Method for Convex Programming

In this paper we introduce a conic optimization formulation for inequality-constrained convex programming, and propose a self-dual embedding model for solving the resulting conic optimization problem. The primal and dual cones in this formulation are characterized by the original constraint functions and their corresponding conjugate functions respectively. Hence they are completely symmetric. This allows for … Read more

A truncated SQP algorithm for solving nonconvex equality constrained optimization problems

An algorithm for solving equality constrained optimization problems is proposed. It can deal with nonconvex functions and uses a truncated conjugate algorithm for detecting nonconvexity. The algorithm ensures convergence from remote starting point by using line-search. Numerical experiments are reported, comparing the approach with the one implemented in the trust region codes ETR and Knitro. … Read more

Branch and cut based on the volume algorithm: Steiner trees in graphs and max-cut

We present a Branch-and-Cut algorithm where the Volume Algorithm is applied to the linear programming relaxations arising at each node of the search tree. This means we use fast approximate solutions to these linear programs instead of exact but slower solutions given by the traditionally used dual simplex method. Our claim is that such a … Read more

Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem

We formulate a block-iterative algorithmic scheme for the solution of systems of linear inequalities and/or equations and analyze its convergence. This study provides as special cases proofs of convergence of (i) the recently proposed Component Averaging (CAV) method of Censor, Gordon and Gordon ({\it Parallel Computing}, 27:777–808, 2001), (ii) the recently proposed Block-Iterative CAV (BICAV) … Read more

[PENNON – A Generalized Augmented Lagrangian Methodfor Semidefinite Programming

This article describes a generalization of the PBM method by Ben-Tal and Zibulevsky to convex semidefinite programming problems. The algorithm used is a generalized version of the Augmented Lagrangian method. We present details of this algorithm as implemented in a new code PENNON. The code can also solve second-order conic programming (SOCP) problems, as well … Read more

An Analysis of the EM Algorithm andEntropy-Like Proximal Point Methods

The EM algorithm is a popular method for maximum likelihood estimation from incomplete data. This method may be viewed as a proximal point method for maximizing the log-likelhood function using an integral form of the Kullback-Leibler distance function. Motivated by this interpretation, we consider a proximal point method using an integral form of entropy-like distance … Read more