An Accelerated Linearized Alternating Direction Method of Multipliers

We present a novel framework, namely AADMM, for acceleration of linearized alternating direction method of multipliers (ADMM). The basic idea of AADMM is to incorporate a multi-step acceleration scheme into linearized ADMM. We demonstrate that for solving a class of convex composite optimization with linear constraints, the rate of convergence of AADMM is better than … Read more

Iterative Reweighted Linear Least Squares for Exact Penalty Subproblems on Product Sets

We present two matrix-free methods for solving exact penalty subproblems on product sets that arise when solving large-scale optimization problems. The first approach is a novel iterative reweighting algorithm (IRWA), which iteratively minimizes quadratic models of relaxed subproblems while automatically updating a relaxation vector. The second approach is based on alternating direction augmented Lagrangian (ADAL) … Read more

On the Proximal Jacobian Decomposition of ALM for Multiple-block Separable Convex Minimization Problems and its Relationship to ADMM

The augmented Lagrangian method (ALM) is a benchmark for solving convex minimization problems with linear constraints. When the objective function of the model under consideration is representable as the sum of some functions without coupled variables, a Jacobian or Gauss-Seidel decomposition is often implemented to decompose the ALM subproblems so that the functions’ properties could … Read more

A Regularized SQP Method with Convergence to Second-Order Optimal Points

Regularized and stabilized sequential quadratic programming methods are two classes of sequential quadratic programming (SQP) methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that provides a strong connection between augmented Lagrangian methods and stabilized SQP methods. The method … Read more

Optimal scenario set partitioning for multistage stochastic programming with the progressive hedging algorithm

In this paper, we propose a new approach to reduce the total running time (RT) of the progressive hedging algorithm (PHA) for solving multistage stochastic programs (MSPs) defined on a scenario tree. Instead of using the conventional scenario decomposition scheme, we apply a multi-scenario decomposition scheme and partition the scenario set in order to minimize … Read more

Separable Approximations and Decomposition Methods for the Augmented Lagrangian

In this paper we study decomposition methods based on separable approximations for minimizing the augmented Lagrangian. In particular, we study and compare the Diagonal Quadratic Approximation Method (DQAM) of Mulvey and Ruszczy\'{n}ski and the Parallel Coordinate Descent Method (PCDM) of Richt\'{a}rik and Tak\'{a}\v{c}. We show that the two methods are equivalent for feasibility problems up … Read more

Local Convergence of the Method of Multipliers for Variational and Optimization Problems under the Sole Noncriticality Assumption

We present local convergence analysis of the method of multipliers for equality-constrained variational problems (in the special case of optimization, also called the augmented Lagrangian method) under the sole assumption that the dual starting point is close to a noncritical Lagrange multiplier (which is weaker than second-order sufficiency). Local superlinear convergence is established under the … Read more

On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming

The augmented Lagrangian method (ALM) is a benchmark for solving the convex minimization problem with linear constraints. We consider the special case where the objective is in form of the sum of m functions without coupled variables. For solving this separable convex programming model, it is usually required to decompose the ALM subproblem at each … Read more

An Augmented Lagrangian Method for Conic Convex Programming

We propose a new first-order augmented Lagrangian algorithm ALCC for solving convex conic programs of the form min{rho(x)+gamma(x): Ax-b in K, x in chi}, where rho and gamma are closed convex functions, and gamma has a Lipschitz continuous gradient, A is mxn real matrix, K is a closed convex cone, and chi is a “simple” … Read more

Abstract Newtonian Frameworks and Their Applications

We unify and extend some Newtonian iterative frameworks developed earlier in the literature, which results in a collection of convenient tools for local convergence analysis of various algorithms under various sets of assumptions including strong metric regularity, semistability, or upper-Lipschizt stability, the latter allowing for nonisolated solutions. These abstract schemes are further applied for deriving … Read more