A novel approach for bilevel programs based on Wolfe duality

This paper considers a bilevel program, which has many applications in practice. To develop effective numerical algorithms, it is generally necessary to transform the bilevel program into a single-level optimization problem. The most popular approach is to replace the lower-level program by its KKT conditions and then the bilevel program can be transformed into a … Read more

Nash Bargaining Partitioning in Decentralized Portfolio Management

In the context of decentralized portfolio management, understanding how to distribute a fixed budget among decentralized intermediaries is a relevant question for financial investors. We consider the Nash bargaining partitioning for a class of decentralized investment problems, where intermediaries are in charge of the portfolio construction in heterogeneous local markets and act as risk/disutility minimizers. … Read more

A Gentle and Incomplete Introduction to Bilevel Optimization

These are lecture notes on bilevel optimization. The class of bilevel optimization problems is formally introduced and motivated using examples from different fields. Afterward, the main focus is on how to solve linear and mixed-integer linear bilevel optimization problems. To this end, we first consider various single-level reformulations of bilevel optimization problems with linear or … Read more

Design of Poisoning Attacks on Linear Regression Using Bilevel Optimization

Poisoning attack is one of the attack types commonly studied in the field of adversarial machine learning. The adversary generating poison attacks is assumed to have access to the training process of a machine learning algorithm and aims to prevent the algorithm from functioning properly by injecting manipulative data while the algorithm is being trained. … Read more

On Convex Lower-Level Black-Box Constraints in Bilevel Optimization with an Application to Gas Market Models with Chance Constraints

Bilevel optimization is an increasingly important tool to model hierarchical decision making. However, the ability of modeling such settings makes bilevel problems hard to solve in theory and practice. In this paper, we add on the general difficulty of this class of problems by further incorporating convex black-box constraints in the lower level. For this … Read more

Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic Reserves and Demand Forecasting

Forecasting and decision-making are generally modeled as two sequential steps with no feedback, following an open-loop approach. In this paper, we present application-driven learning, a new closed-loop framework in which the processes of forecasting and decision-making are merged and co-optimized through a bilevel optimization problem. We present our methodology in a general format and prove … Read more

A Bilevel Optimization Approach to Decide the Feasibility of Bookings in the European Gas Market

The European gas market is organized as a so-called entry-exit system with the main goal to decouple transport and trading. To this end, gas traders and the transmission system operator (TSO) sign so-called booking contracts that grant capacity rights to traders to inject or withdraw gas at certain nodes up to this capacity. On a … Read more

A Robust Approach for Modeling Limited Observability in Bilevel Optimization

In bilevel optimization, hierarchical optimization problems are considered in which two players – the leader and the follower – act and react in a non-cooperative and sequential manner. In many real-world applications, the leader may face a follower whose reaction deviates from the one expected by the leader due to some kind of bounded rationality. … Read more

A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization

Bilevel optimization is a field of mathematical programming in which some variables are constrained to be the solution of another optimization problem. As a consequence, bilevel optimization is able to model hierarchical decision processes. This is appealing for modeling real-world problems, but it also makes the resulting optimization models hard to solve in theory and … Read more

Twenty years of continuous multiobjective optimization in the twenty-first century

The survey highlights some of the research topics which have attracted attention in the last two decades within the area of mathematical optimization of multiple objective functions. We give insights into topics where a huge progress can be seen within the last years. We give short introductions to the specific sub-fields as well as some … Read more