A second-order cone representable class of nonconvex quadratic programs

We consider the problem of minimizing a sparse nonconvex quadratic function over the unit hypercube. By developing an extension of the Reformulation Linearization Technique (RLT) to continuous quadratic sets, we propose a novel second-order cone (SOC) representable relaxation for this problem. By exploiting the sparsity of the quadratic function, we establish a sufficient condition under … Read more

Global Optimization of Gas Transportation and Storage: Convex Hull Characterizations and Relaxations

Gas transportation and storage has become one of the most relevant and important optimization problems in energy systems. This problem inherently includes highly nonlinear and nonconvex aspects due to gas physics, and discrete aspects due to the control decisions of active network elements. Obtaining even locally optimal solutions for this problem presents significant mathematical and … Read more

Facets from solitary items for the 0/1 knapsack polytope

We introduce a new class of valid inequalities for any 0/1 knapsack polytope, called Solitary item inequality, which are facet-defining. We prove that any facet-defining inequality of a 0/1 knapsack polytope with nonnegative integral coefficients and right hand side 1 belongs to this class, and hence, the set of facet-defining inequalities corresponding to strong covers … Read more

An Extended Validity Domain for Constraint Learning

We consider embedding a predictive machine-learning model within a prescriptive optimization problem. In this setting, called constraint learning, we study the concept of a validity domain, i.e., a constraint added to the feasible set, which keeps the optimization close to the training data, thus helping to ensure that the computed optimal solution exhibits less prediction … Read more

Extended Formulations for Control Languages Defined by Finite-State Automata

Many discrete optimal control problems feature combinatorial constraints on the possible switching patterns, a common example being minimum dwell-time constraints. After discretizing to a finite time grid, for these and many similar types of constraints, it is possible to give a description of the convex hull of feasible (finite-dimensional) binary controls via extended formulations. In … Read more

The Bipartite Implication Polytope: Conditional Relations over Multiple Sets of Binary Variables

Inspired by its occurrence as a substructure in a stochastic railway timetabling model, we study in this work a special case of the bipartite boolean quadric polytope. It models conditional relations across three sets of binary variables, where selections within two implying sets imply a choice in a corresponding implied set. We call this polytope … Read more

A proof for multilinear error bounds

We derive the error bounds for multilinear terms in $[0,1]^n$ using a proof methodology based on the polyhedral representation of the convex hull. We extend the result for multilinear terms in $[\boldsymbol{L},\boldsymbol{0}] \times [\boldsymbol{0},\boldsymbol{U}]\subset\mathbb{R}^n$. ArticleDownload View PDF

A Note on Semidefinite Representable Reformulations for Two Variants of the Trust-Region Subproblem

Motivated by encouraging numerical results in the literature, in this note we consider two specific variants of the trust-region subproblem and provide exact semidefinite representable reformulations. The first is over the intersection of two balls; the second is over the intersection of a ball and a special second-order conic representable set. Different from the technique … Read more

On Constrained Mixed-Integer DR-Submodular Minimization

DR-submodular functions encompass a broad class of functions which are generally non-convex and non-concave. We study the problem of minimizing any DR-submodular function, with continuous and general integer variables, under box constraints and possibly additional monotonicity constraints. We propose valid linear inequalities for the epigraph of any DR-submodular function under the constraints. We further provide … Read more