Approximate Positively Correlated Distributions and Approximation Algorithms for D-optimal Design

Experimental design is a classical problem in statistics and has also found new applications in machine learning. In the experimental design problem, the aim is to estimate an unknown vector x in m-dimensions from linear measurements where a Gaussian noise is introduced in each measurement. The goal is to pick k out of the given … Read more

The Adaptive Robust Multi-Period Alternating Current Optimal Power Flow Problem

This paper jointly addresses two major challenges in power system operations: i) dealing with non-convexity in the power flow equations, and ii) systematically capturing uncertainty in renewable power availability and in active and reactive power consumption at load buses. To overcome these challenges, this paper proposes a two-stage adaptive robust optimization model for the multi-period … Read more

Complex Number Formulation and Convex Relaxations for Aircraft Conflict Resolution

We present a novel complex number formulation along with tight convex relaxations for the aircraft conflict resolution problem. Our approach combines both speed and heading control and provides global optimality guarantees despite non-convexities in the feasible region. As a side result, we present a new characterization of the conflict separation condition in the form of … Read more

Elementary polytopes with high lift-and-project ranks for strong positive semidefinite operators

We consider operators acting on convex subsets of the unit hypercube. These operators are used in constructing convex relaxations of combinatorial optimization problems presented as a 0,1 integer programming problem or a 0,1 polynomial optimization problem. Our focus is mostly on operators that, when expressed as a lift-and-project operator, involve the use of semidefiniteness constraints … Read more

Strengthening the SDP Relaxation of AC Power Flows with Convex Envelopes, Bound Tightening, and Lifted Nonlinear Cuts

This paper considers state-of-the-art convex relaxations for the AC power flow equations and introduces new valid cuts based on convex envelopes and lifted nonlinear constraints. These valid linear inequalities strengthen existing semidefinite and quadratic programming relaxations and dominate existing cuts proposed in the litterature. Together with model intersections and bound tightening, the new linear cuts … Read more

Convex Relaxations for Gas Expansion Planning

Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, … Read more

A Comprehensive Analysis of Polyhedral Lift-and-Project Methods

We consider lift-and-project methods for combinatorial optimization problems and focus mostly on those lift-and-project methods which generate polyhedral relaxations of the convex hull of integer solutions. We introduce many new variants of Sherali–Adams and Bienstock–Zuckerberg operators. These new operators fill the spectrum of polyhedral lift-and-project operators in a way which makes all of them more … Read more

Convex Quadratic Relaxations for Mixed-Integer Nonlinear Programs in Power Systems

This paper presents a set of new convex quadratic relaxations for nonlinear and mixed-integer nonlinear programs arising in power systems. The considered models are motivated by hybrid discrete/continuous applications where existing approximations do not provide optimality guarantees. The new relaxations offer computational efficiency along with minimal optimality gaps, providing an interesting alternative to state-of-the-art semi-definite … Read more

Convex relaxation for finding planted influential nodes in a social network

We consider the problem of maximizing influence in a social network. We focus on the case that the social network is a directed bipartite graph whose arcs join senders to receivers. We consider both the case of deterministic networks and probabilistic graphical models, that is, the so-called “cascade” model. The problem is to find the … Read more

Robust convex relaxation for the planted clique and densest k-subgraph problems

We consider the problem of identifying the densest k-node subgraph in a given graph. We write this problem as an instance of rank-constrained cardinality minimization and then relax using the nuclear and l1 norms. Although the original combinatorial problem is NP-hard, we show that the densest k-subgraph can be recovered from the solution of our … Read more