Global Convergence of Unmodified 3-Block ADMM for a Class of Convex Minimization Problems

The alternating direction method of multipliers (ADMM) has been successfully applied to solve structured convex optimization problems due to its superior practical performance. The convergence properties of the 2-block ADMM have been studied extensively in the literature. Specifically, it has been proven that the 2-block ADMM globally converges for any penalty parameter $\gamma>0$. In this … Read more

A corrected semi-proximal ADMM for multi-block convex optimization and its application to DNN-SDPs

In this paper we propose a corrected semi-proximal ADMM (alternating direction method of multipliers) for the general $p$-block $(p\!\ge 3)$ convex optimization problems with linear constraints, aiming to resolve the dilemma that almost all the existing modified versions of the directly extended ADMM, although with convergent guarantee, often perform substantially worse than the directly extended … Read more

A Parallel Evolution Strategy for an Earth Imaging Problem in Geophysics

In this paper we propose a new way to compute a warm starting point for a challenging global optimization problem related to Earth imaging in geophysics. The warm start consists of a velocity model that approximately solves a full-waveform inverse problem at low frequency. Our motivation arises from the availability of massively parallel computing platforms … Read more

A Trust Region Algorithm with a Worst-Case Iteration Complexity of ${\cal O}(\epsilon^{-3/2})$ for Nonconvex Optimization

We propose a trust region algorithm for solving nonconvex smooth optimization problems. For any $\bar\epsilon \in (0,\infty)$, the algorithm requires at most $\mathcal{O}(\epsilon^{-3/2})$ iterations, function evaluations, and derivative evaluations to drive the norm of the gradient of the objective function below any $\epsilon \in (0,\bar\epsilon]$. This improves upon the $\mathcal{O}(\epsilon^{-2})$ bound known to hold for … Read more

On efficiency of nonmonotone Armijo-type line searches

Monotonicity and nonmonotonicity play a key role in studying the global convergence and the efficiency of iterative schemes employed in the field of nonlinear optimization, where globally convergent and computationally efficient schemes are explored. This paper addresses some features of descent schemes and the motivation behind nonmonotone strategies and investigates the efficiency of an Armijo-type … Read more

Globally Convergent Evolution Strategies for Constrained Optimization.

In this work we propose, analyze, and test algorithms for linearly constrained optimization when no use of derivatives of the objective function is made. The proposed methodology is built upon the globally convergent evolution strategies previously introduced by the authors for unconstrained optimization. Two approaches are encompassed to handle the constraints. In a first approach, … Read more

Algebraic rules for quadratic regularization of Newton’s method

In this work we propose a class of quasi-Newton methods to minimize a twice differentiable function with Lipschitz continuous Hessian. These methods are based on the quadratic regularization of Newton’s method, with algebraic explicit rules for computing the regularizing parameter. The convergence properties of this class of methods are analysed. We show that if the … Read more

An Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Optimization

We propose a sequential quadratic optimization method for solving nonlinear optimization problems with equality and inequality constraints. The novel feature of the algorithm is that, during each iteration, the primal-dual search direction is allowed to be an inexact solution of a given quadratic optimization subproblem. We present a set of generic, loose conditions that the … Read more

Convergence of trust-region methods based on probabilistic models

In this paper we consider the use of probabilistic or random models within a classical trust-region framework for optimization of deterministic smooth general nonlinear functions. Our method and setting differs from many stochastic optimization approaches in two principal ways. Firstly, we assume that the value of the function itself can be computed without noise, in … Read more

Globally convergent DC trust-region methods

In this paper, we investigate the use of DC (Difference of Convex functions) models and algorithms in the solution of nonlinear optimization problems by trust-region methods. We consider DC local models for the quadratic model of the objective function used to compute the trust-region step, and apply a primal-dual subgradient method to the solution of … Read more