Tuning-Free Bilevel Optimization: New Algorithms and Convergence Analysis

Bilevel optimization has recently attracted considerable attention due to its abundant applications in machine learning problems. However, existing methods rely on prior knowledge of problem parameters to determine stepsizes, resulting in significant effort in tuning stepsizes when these parameters are unknown. In this paper, we propose two novel tuning-free algorithms, D-TFBO and S-TFBO. D-TFBO employs … Read more

Forecasting Urban Traffic States with Sparse Data Using Hankel Temporal Matrix Factorization

Forecasting urban traffic states is crucial to transportation network monitoring and management, playing an important role in the decision-making process. Despite the substantial progress that has been made in developing accurate, efficient, and reliable algorithms for traffic forecasting, most existing approaches fail to handle sparsity, high-dimensionality, and nonstationarity in traffic time series and seldom consider … Read more

An Extended Validity Domain for Constraint Learning

We consider embedding a predictive machine-learning model within a prescriptive optimization problem. In this setting, called constraint learning, we study the concept of a validity domain, i.e., a constraint added to the feasible set, which keeps the optimization close to the training data, thus helping to ensure that the computed optimal solution exhibits less prediction … Read more

A graph-structured distance for mixed-variable domains with meta variables

Heterogeneous datasets emerge in various machine learning and optimization applications that feature different input sources, types or formats. Most models or methods do not natively tackle heterogeneity. Hence, such datasets are often partitioned into smaller and simpler ones, which may limit the generalizability or performance, especially if data is limited. The first main contribution of … Read more

Stochastic Aspects of Dynamical Low-Rank Approximation in the Context of Machine Learning

The central challenges of today’s neural network architectures are the prohibitive memory footprint and the training costs associated with determining optimal weights and biases. A large portion of research in machine learning is therefore dedicated to constructing memory-efficient training methods. One promising approach is dynamical low-rank training (DLRT) which represents and trains parameters as a … Read more

Neur2BiLO: Neural Bilevel Optimization

Bilevel optimization deals with nested problems in which a leader takes the first decision to minimize their objective function while accounting for a follower best-response reaction. Constrained bilevel problems with integer variables are particularly notorious for their hardness.  While exact solvers have been proposed for mixed-integer~linear bilevel optimization, they tend to scale poorly with problem … Read more

Optimal counterfactual explanations for k-Nearest Neighbors using Mathematical Optimization and Constraint Programming

Within the topic of explainable AI, counterfactual explanations to classifiers have received significant recent attention. We study counterfactual explanations that try to explain why a data point received an undesirable classification by providing the closest data point that would have received a desirable one. Within the context of one the simplest and most popular classification … Read more

Data-driven Stochastic Vehicle Routing Problems with Deadlines

Vehicle routing problems (VRPs) with deadlines have received significant attention around the world. Motivated by a real-world food delivery problem, we assume that the travel time depends on the routing decisions, and study a data-driven stochastic VRP with deadlines and endogenous uncertainty. We use the non-parametric approaches, including k-nearest neighbor (kNN) and kernel density estimation … Read more

Data-Driven Counterfactual Optimization For Personalized Clinical Decision-Making

Chronic diseases have a significant impact on global mortality rates and healthcare costs. Notably, machine learning-based clinical assessment tools are becoming increasingly popular for informing treatment targets for high-risk patients with chronic diseases. However, using these tools alone, it is challenging to identify personalized treatment targets that lower the risks of adverse outcomes to a … Read more