Projected Stochastic Momentum Methods for Nonlinear Equality-Constrained Optimization for Machine Learning

Two algorithms are proposed, analyzed, and tested for solving continuous optimization problems with nonlinear equality constraints. Each is an extension of a stochastic momentum-based method from the unconstrained setting to the setting of a stochastic Newton-SQP-type algorithm for solving equality-constrained problems. One is an extension of the heavy-ball method and the other is an extension … Read more

A Majorization-Minimization approach for multiclass classification in a big data scenario

This work presents a novel optimization approach for training linear classifiers in multiclass classification tasks, when focusing on a regularized and smooth Weston-Watkins support vector machine (SVM) model. We propose a Majorization-Minimization (MM) algorithm to solve the resulting, Lipschitz-differentiable, optimization problem. To enhance scalability of the algorithm when tackling large datasets, we introduce an incremental … Read more

Machine Learning–Enhanced Column Generation for Large-Scale Capacity Planning Problems

Capacity Planning problems are a class of optimization problems used in diverse industries to improve resource allocation and make investment decisions. Solving real-world instances of these problems typically requires significant computational effort. To tackle this, we propose machine-learning-aided column generation methods for solving large-scale capacity planning problems. Our goal is to accelerate column generation by … Read more

Machine Learning Algorithms for Assisting Solvers for Constraint Satisfaction Problems

This survey proposes a unifying conceptual framework and taxonomy that systematically integrates Machine Learning (ML) and Reinforcement Learning (RL) with classical paradigms for Constraint Satisfaction and Boolean Satisfiability solving. Unlike prior reviews that focus on individual applications, we organize the literature around solver architecture, linking each major phase—constraint propagation, heuristic decision-making, conflict analysis, and meta-level … Read more

Machine Learning Algorithms for Assisting Solvers for Decision Optimization Problems

Combinatorial decision problems lie at the intersection of Operations Research (OR) and Artificial Intelligence (AI), encompassing structured optimization tasks such as submodular selection, dynamic programming, planning, and scheduling. These problems exhibit exponential growth in decision complexity, driven by interdependent choices coupled through logical, temporal, and resource constraints.  Classical optimization frameworks—including integer programming, submodular optimization, and … Read more

Counterfactual explanations with the k-Nearest Neighborhood classifier and uncertain data

Counterfactual Analysis is a powerful tool in Explainable Machine Learning. Given a classifier and a record, one seeks the smallest perturbation necessary to have the perturbed record, called the counterfactual explanation, classified in the desired class. Feature uncertainty in data reflects the inherent variability and noise present in real-world scenarios, and therefore, there is a … Read more

Optimizing pricing strategies through learning the market structure

This study explores the integration of market structure learning into pricing strategies to maximize revenue in e-commerce and retail environments. We consider the problem of determining the revenue maximizing price of a single product in a market of heterogeneous consumers segmented by their product valuations; and analyze the pricing strategies for varying levels of prior … Read more

Adaptive Conditional Gradient Descent

Selecting an effective step-size is a fundamental challenge in first-order optimization, especially for problems with non-Euclidean geometries. This paper presents a novel adaptive step-size strategy for optimization algorithms that rely on linear minimization oracles, as used in the Conditional Gradient or non-Euclidean Normalized Steepest Descent algorithms. Using a simple heuristic to estimate a local Lipschitz … Read more

Machine Learning Algorithms for Improving Black Box Optimization Solvers

Black-box optimization (BBO) addresses problems where objectives are accessible only through costly queries without gradients or explicit structure. Classical derivative-free methods—line search, direct search, and model-based solvers such as Bayesian optimization—form the backbone of BBO, yet often struggle in high-dimensional, noisy, or mixed-integer settings. Recent advances use machine learning (ML) and reinforcement learning (RL) to … Read more

Toward Decision-Oriented Prognostics: An Integrated Estimate-Optimize Framework for Predictive Maintenance

Recent research increasingly integrates machine learning (ML) into predictive maintenance (PdM) to reduce operational and maintenance costs in data-rich operational settings. However, uncertainty due to model misspecification continues to limit widespread industrial adoption. This paper investigates a PdM framework in which sensor-driven prognostics inform decision-making under economic trade-offs within a finite decision space. We investigate … Read more