Penalty Alternating Direction Methods for Mixed-Integer Optimization: A New View on Feasibility Pumps

Feasibility pumps are highly effective primal heuristics for mixed-integer linear and nonlinear optimization. However, despite their success in practice there are only few works considering their theoretical properties. We show that feasibility pumps can be seen as alternating direction methods applied to special reformulations of the original problem, inheriting the convergence theory of these methods. … Read more

Bulk Ship Fleet Renewal and Deployment under Uncertainty: A Multi-Stage Stochastic Programming Approach

We study a maritime fleet renewal and deployment problem under demand and charter cost uncertainty. A decision-maker for an industrial bulk shipping company must determine a suitable fleet size, mix, and deployment strategy to satisfy stochastic demand over a given planning horizon. She may acquire vessels in two ways: time chartering and voyage chartering. Time … Read more

Robust optimization of dose-volume metrics for prostate HDR-brachytherapy incorporating target- and OAR volume delineation uncertainties

In radiation therapy planning, uncertainties in target volume definition yield a risk of underdosing the tumor. The classical way to prevent this in the context of external beam radiotherapy (EBRT) has been to expand the clinical target volume (CTV) with an isotropic margin to obtain the planning target volume (PTV). However, the EBRT-based PTV concept … Read more

The Power Edge Set problem

The automated real time control of an electrical network is achieved through the estimation of its state using Phasor Measurement Units (PMUs). Given an undirected graph representing the network, we study the problem of finding the minimum number of PMUs to place on the edges such that the graph is fully observed. This problem is … Read more

Mixed Integer Second-Order Cone Programming for the Horizontal and Vertical Free-flight Planning Problem

In the past, travel routes for civil passenger and cargo air traffic were aligned to the air traffic network (ATN). To resolve the network congestion problem, the free-flight system has recently been introduced in more and more regions around the globe, allowing flight operations to make full use of the four space-and-time dimensions. For the … Read more

Semi-Online Scheduling on Two Uniform Machines with Known Optimum, Part II: Tight Upper Bounds

We consider a semi-online version of the problem of scheduling a sequence of jobs of different lengths on two uniform machines with given speeds $1$ and $s$. Jobs are revealed one by one (the assignment of a job has to be done before the next job is revealed), and the objective is to minimize the … Read more

Solving Vertex Coloring Problems as Maximum Weight Stable Set Problems

In Vertex Coloring Problems, one is required to assign a color to each vertex of an undirected graph in such a way that adjacent vertices receive different colors, and the objective is to minimize the cost of the used colors. In this work we solve four different coloring problems formulated as Maximum Weight Stable Set … Read more

An MILP approach to Multi-location, Multi-Period Equipment Selection for Surface Mining with Case Studies

In the surface mining industry, the Equipment Selection Problem involves choosing an appropriate fleet of trucks and loaders such that the long-term mine plan can be satisfied. An important characteristic for multi-location (multi-location and multi-dumpsite) mines is that the underlying problem is a multi-commodity flow problem. The problem is therefore at least as difficult as … Read more

Tight and Compact MIP Formulation of Configuration-Based Combined-Cycle Units

Private investors, flexibility, efficiency and environmental requirements from deregulated markets have led the existence and building of a significant number of combined-cycle gas turbines (CCGTs) in many power systems. These plants represent a complicated optimization problem for the short-term planning unit commitment (UC) carried out by independent system operators due to their multiple operating configurations. … Read more

How to Convexify the Intersection of a Second Order Cone and a Nonconvex Quadratic

A recent series of papers has examined the extension of disjunctive-programming techniques to mixed-integer second-order-cone programming. For example, it has been shown—by several authors using different techniques—that the convex hull of the intersection of an ellipsoid, $\E$, and a split disjunction, $(l – x_j)(x_j – u) \le 0$ with $l < u$, equals the intersection ... Read more