Optimization in Theory and Practice

Algorithms for continuous optimization problems have a rich history of design and innovation over the past several decades, in which mathematical analysis of their convergence and complexity properties plays a central role. Besides their theoretical properties, optimization algorithms are interesting also for their practical usefulness as computational tools for solving real-world problems. There are often … Read more

Discovering Heuristics with Large Language Models (LLMs) for Mixed-Integer Programs: Single-Machine Scheduling

TitleDiscovering Heuristics with Large Language Models (LLMs) for Mixed-Integer Programs: Single-Machine Scheduling Authorsİbrahim Oğuz Çetinkaya^1; İ. Esra Büyüktahtakın^1*; Parshin Shojaee^2; Chandan K. Reddy^2 Affiliations^1 Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA^2 Department of Computer Science, Virginia Tech, Arlington, VA, USA Abstract: Our study contributes to the scheduling and combinatorial optimization … Read more

MultiObjectiveAlgorithms.jl: a Julia package for solving multi-objective optimization problems

We present MultiObjectiveAlgorithms.jl, an open-source Julia library for solving multi-objective optimization problems written in JuMP. MultiObjectiveAlgorithms.jl implements a number of different solution algorithms, which all rely on an iterative scalarization of the problem from a multi-objective optimization problem to a sequence of single-objective subproblems. As part of this work, we extended JuMP to support vector-valued … Read more

Gradient-Driven Solution Based on Indifference Analysis (GIA) for Scenario Modelling Optimization Problem

This paper introduces an optimization technique for scenario modeling in uncertain business situations, termed the Gradient-Driven Solution Based on Indifference Analysis (GIA). GIA evolves the conventional methods of scenario planning by applying a reverse-strategy approach, where future financial goals are specified, and the path to attain these targets are engineered backward. It adopts economic concepts … Read more

Equity-promoting Integer Programming Approaches For Medical Resident Rotation Scheduling

Motivated by our collaboration with a residency program at an academic health system, we propose new integer programming (IP) approaches for the resident-to-rotation assignment problem (RRAP). Given sets of residents, resident classes, and departments, as well as a block structure for each class, staffing needs, rotation requirements for each class, program rules, and resident vacation … Read more

Global Optimization of Non-Linear Systems of Equations by Simulating the Flight of a Projectile in the Conformational Space

A new heuristic optimization algorithm is presented based on an analogy with the physical phenomenon of a projectile launched in a conformational space under the influence of a gravitational force. Its implementation simplicity and the option to enhance it with local search methods make it ideal for the optimization of non-linear systems of equations. The … Read more

Robustness Analysis for Adaptive Optimization With Application to Industrial Decarbonization in the Netherlands

Robustness analysis assesses the performance of a particular solution under variation in the input data. This is distinct from sensitivity analysis, which assesses how variation in the input data changes a model’s optimal solution. For risk assessment purposes, robustness analysis has more practical value than sensitivity analysis. This is because sensitivity analysis, when applied to … Read more

ROBIST: Robust Optimization by Iterative Scenario Sampling and Statistical Testing

In this paper, we propose ROBIST, a simple, yet effective, data-driven algorithm for optimization under parametric uncertainty. The algorithm first generates solutions in an iterative manner by sampling and optimizing over a relatively small set of scenarios. Then, using statistical testing, the robustness of the solutions is evaluated, which can be done with a much … Read more

A robust approach to food aid supply chains

One of the great challenges in reaching zero hunger is to secure the availability of sufficient nourishment in the worst of times such as humanitarian emergencies. Food aid operations during a humanitarian emergency are typically subject to a high level of uncertainty. In this paper, we develop a novel robust optimization model for food aid … Read more

Evaluation of Political Redistricting in Japan by Optimization and Enumeration

The political/electoral districting problem for the single-seat constituency system is a problem of decomposing a graph into connected components of a given number of seats under several conditions and objectives. We evaluate and analyze the current division of single-seat constituencies for the House of Representatives using optimization and enumeration. The objective function is to minimize … Read more