The Sard theorem for essentially smooth locally Lipschitz maps and applications in optimization

The classical Sard theorem states that the set of critical values of a $C^{k}$-map from an open set of $\R^n$ to $\R^p$ ($n\geq p$) has Lebesgue measure zero provided $k\geq n-p+1$. In the recent paper by Barbet, Dambrine, Daniilidis and Rifford, the so called “preparatory Sard theorem” for a compact countable set $I$ of $C^k$ … Read more

An Integer Programming Formulation of the Key Management Problem in Wireless Sensor Networks

With the advent of modern communications systems, much attention has been put on developing methods for securely transferring information between constituents of wireless sensor networks. To this effect, we introduce a mathematical programming formulation for the key management problem, which broadly serves as a mechanism for encrypting communications. In particular, an integer programming model of … Read more

Coalescing Data and Decision Sciences for Analytics

The dream of analytics is to work from common, clean, and consistent data sources in a manner that all of its facets (descriptive, predictive, and prescriptive) are sup- ported via a coherent vision of data and decision sciences. To the extent that data and decisions sciences work within logically/mathematically consistent frameworks, and that these paradigms … Read more

CasADi – A software framework for nonlinear optimization and optimal control

We present CasADi, an open-source software framework for numerical optimization. CasADi is a general-purpose tool that can be used to model and solve optimization problems with a large degree of flexibility, larger than what is associated with popular algebraic modeling languages such as AMPL, GAMS, JuMP or Pyomo. Of special interest are problems constrained by … Read more

Load Scheduling for Residential Demand Response on Smart Grids

The residential load scheduling problem is concerned with finding an optimal schedule for the operation of residential loads so as to minimize the total cost of energy while aiming to respect a prescribed limit on the power level of the residence. We propose a mixed integer linear programming formulation of this problem that accounts for … Read more

A partial outer convexification approach to control transmission lines

In this paper we derive an efficient optimization approach to calculate optimal controls of electric transmission lines. These controls consist of time-dependent inflows and switches that temporarily disable single arcs or whole subgrids to reallocate the flow inside the system. The aim is then to find the best energy input in terms of boundary controls … Read more

NeatWork, a tool for the design of gravity-driven water distribution systems for poor rural communities

NeatWork is an advanced optimization and simulation tool for the design of purely gravity-driven water distribution systems aiming at delivering clean water to poor rural communities. The exclusion of any adjustable devices, such as pumps and valves, for controlling pressures and flows is motivated by two main reasons: firstly, the system should be as simple … Read more

Constraints reduction programming by subset selection: a study from numerical aspect

We consider a novel method entitled constraints reduction programming which aims to reduce the constraints in an optimization model. This method is derived from various applications of management or decision making, and has potential ability to handle a wider range of applications. Due to the high combinatorial complexity of underlying model, it is difficult to … Read more

Gradient Descent using Duality Structures

Gradient descent is commonly used to solve optimization problems arising in machine learning, such as training neural networks. Although it seems to be effective for many different neural network training problems, it is unclear if the effectiveness of gradient descent can be explained using existing performance guarantees for the algorithm. We argue that existing analyses … Read more

Mathematical models for Multi Container Loading Problems with practical constraints

We address the multi container loading problem of a company that has to serve its customers by first putting the products on pallets and then loading the pallets into trucks. We approach the problem by developing and solving integer linear models. To be useful in practice, our models consider three types of constraints: geometric constraints, … Read more