Risk neutral and risk averse Stochastic Dual Dynamic Programming method

In this paper we discuss risk neutral and risk averse approaches to multistage (linear) stochastic programming problems based on the Stochastic Dual Dynamic Programming (SDDP) method. We give a general description of the algorithm and present computational studies related to planning of the Brazilian interconnected power system. Citation ArticleDownload View PDF

Line search methods with variable sample size for unconstrained optimization

Minimization of unconstrained objective function in the form of mathematical expectation is considered. Sample Average Approximation – SAA method transforms the expectation objective function into a real-valued deterministic function using large sample and thus deals with deterministic function minimization. The main drawback of this approach is its cost. A large sample of the random variable … Read more

A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem

Gaussian processes are the cornerstone of statistical analysis in many application ar- eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for comput- ing the solution of the maximum likelihood problem involving Gaussian processes. … Read more

A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem

Gaussian processes are the cornerstone of statistical analysis in many application ar- eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for comput- ing the solution of the maximum likelihood problem involving Gaussian processes. … Read more

A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem

Gaussian processes are the cornerstone of statistical analysis in many application ar- eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for comput- ing the solution of the maximum likelihood problem involving Gaussian processes. … Read more

A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem

Gaussian processes are the cornerstone of statistical analysis in many application ar- eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for comput- ing the solution of the maximum likelihood problem involving Gaussian processes. … Read more

Two stage stochastic equilibrium problems with equilibrium constraints: modeling and numerical schemes

This paper presents a two stage stochastic equilibrium problem with equilibrium constraints(SEPEC) model. Some source problems which motivate the model are discussed. Monte Carlo sampling method is applied to solve the SEPEC. The convergence analysis on the statistical estimators of Nash equilibria and Nash stationary points are presented. ArticleDownload View PDF

Approximating Stationary Points of Stochastic Mathematical Programs with Equilibrium Constraints via Sample Averaging

We investigate sample average approximation of a general class of one-stage stochastic mathematical programs with equilibrium constraints. By using graphical convergence of unbounded set-valued mappings, we demonstrate almost sure convergence of a sequence of stationary points of sample average approximation problems to their true counterparts as the sample size increases. In particular we show the … Read more

Stability Analysis of Two Stage Stochastic Mathematical Programs with Complementarity Constraints via NLP-Regularization

This paper presents numerical approximation schemes for a two stage stochastic programming problem where the second stage problem has a general nonlinear complementarity constraint: first, the complementarity constraint is approximated by a parameterized system of inequalities with a well-known regularization approach (SIOPT, Vol.11, 918-936) in deterministic mathematical programs with equilibrium constraints; the distribution of the … Read more

Sample Average Approximation for Stochastic Dominance Constrained Programs

In this paper we study optimization problems with second-order stochastic dominance constraints. This class of problems has been receiving increasing attention in the literature as it allows for the modeling of optimization problems where a risk-averse decision maker wants to ensure that the solution produced by the model dominates certain benchmarks. Here we deal with … Read more