A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem

Gaussian processes are the cornerstone of statistical analysis in many application ar- eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for comput- ing the solution of the maximum likelihood problem involving Gaussian processes. … Read more

A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem

Gaussian processes are the cornerstone of statistical analysis in many application ar- eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for comput- ing the solution of the maximum likelihood problem involving Gaussian processes. … Read more

Two stage stochastic equilibrium problems with equilibrium constraints: modeling and numerical schemes

This paper presents a two stage stochastic equilibrium problem with equilibrium constraints(SEPEC) model. Some source problems which motivate the model are discussed. Monte Carlo sampling method is applied to solve the SEPEC. The convergence analysis on the statistical estimators of Nash equilibria and Nash stationary points are presented. ArticleDownload View PDF

Approximating Stationary Points of Stochastic Mathematical Programs with Equilibrium Constraints via Sample Averaging

We investigate sample average approximation of a general class of one-stage stochastic mathematical programs with equilibrium constraints. By using graphical convergence of unbounded set-valued mappings, we demonstrate almost sure convergence of a sequence of stationary points of sample average approximation problems to their true counterparts as the sample size increases. In particular we show the … Read more

Stability Analysis of Two Stage Stochastic Mathematical Programs with Complementarity Constraints via NLP-Regularization

This paper presents numerical approximation schemes for a two stage stochastic programming problem where the second stage problem has a general nonlinear complementarity constraint: first, the complementarity constraint is approximated by a parameterized system of inequalities with a well-known regularization approach (SIOPT, Vol.11, 918-936) in deterministic mathematical programs with equilibrium constraints; the distribution of the … Read more

Sample Average Approximation for Stochastic Dominance Constrained Programs

In this paper we study optimization problems with second-order stochastic dominance constraints. This class of problems has been receiving increasing attention in the literature as it allows for the modeling of optimization problems where a risk-averse decision maker wants to ensure that the solution produced by the model dominates certain benchmarks. Here we deal with … Read more

Convergence of stochastic average approximation for stochastic optimization problems with mixed expectation and per-scenario constraints

We present a framework for ensuring convergence of sample average approximations to stochastic optimization problems that include expectation constraints in addition to per-scenario constraints. CitationPreprint ANL/MCS 1562-1108ArticleDownload View PDF

Computational study of a chance constrained portfolio selection problem

We study approximations of chance constrained problems. In particular, we consider the Sample Average Approximation (SAA) approach and discuss convergence properties of the resulting problem. A method for constructing bounds for the optimal value of the considered problem is discussed and we suggest how one should tune the underlying parameters to obtain a good approximation … Read more

Asymptotics of minimax stochastic programs

We discuss in this paper asymptotics of the sample average approximation (SAA) of the optimal value of a minimax stochastic programming problem. The main tool of our analysis is a specific version of the infinite dimensional Delta Method. As an example, we discuss asymptotics of SAA of risk averse stochastic programs involving the absolute semideviation … Read more

On Rates of Convergence for Stochastic Optimization Problems Under Non-I.I.D. Sampling

In this paper we discuss the issue of solving stochastic optimization problems by means of sample average approximations. Our focus is on rates of convergence of estimators of optimal solutions and optimal values with respect to the sample size. This is a well-studied problem in case the samples are independent and identically distributed (i.e., when … Read more