Limiting behavior and analyticity of weighted central paths in semidefinite programming

In this paper we analyze the limiting behavior of infeasible weighted central paths in semidefinite programming under the assumption that a strictly complementary solution exists. We show that the paths associated with the “square root” symmetrization of the weighted centrality condition are analytic functions of the barrier parameter $\mu$ even at $\mu=0$ if and only … Read more

An Information Geometric Approach to Polynomial-time Interior-point Algorithms: Complexity Bound via Curvature Integral

In this paper, we study polynomial-time interior-point algorithms in view of information geometry. Information geometry is a differential geometric framework which has been successfully applied to statistics, learning theory, signal processing etc. We consider information geometric structure for conic linear programs introduced by self-concordant barrier functions, and develop a precise iteration-complexity estimate of the polynomial-time … Read more

Block-diagonal semidefinite programming hierarchies for 0/1 programming

Lovasz and Schrijver, and later Lasserre, proposed hierarchies of semidefinite programming relaxations for general 0/1 linear programming problems. In this paper these two constructions are revisited and a new, block-diagonal hierarchy is proposed. It has the advantage of being computationally less costly while being at least as strong as the Lovasz-Schrijver hierarchy. It is applied … Read more

On semidefinite programming relaxations of the traveling salesman problem

We consider a new semidefinite programming (SDP) relaxation of the symmetric traveling salesman problem (TSP), obtained via an SDP relaxation of the more general quadratic assignment problem (QAP). We show that the new relaxation dominates the one in the paper: [D. Cvetkovic, M. Cangalovic and V. Kovacevic-Vucic. Semidefinite Programming Methods for the Symmetric Traveling Salesman … Read more

Two theoretical results for sequential semidefinite programming

We examine the local convergence of a sequential semidefinite programming approach for solving nonlinear programs with nonlinear semidefiniteness constraints. Known convergence results are extended to slightly weaker second order sufficient conditions and the resulting subproblems are shown to have local convexity properties that imply a weak form of self-concordance of the barrier subproblems. Citation Preprint, … Read more

Sufficient and Necessary Conditions for Semidefinite Representability of Convex Hulls and Sets

The article proves sufficient conditions and necessary conditions for SDP representability of convex sets and convex hulls by proposing a new approach to construct SDP representations. The contributions of this paper are: (i) For bounded SDP representable sets $W_1,\cdots,W_m$, we give an explicit construction of an SDP representation for $conv(\cup_{k=1}^mW_k)$. This provides a technique for … Read more

A Numerical Algorithm for Block-Diagonal Decomposition of Matrix *-Algebras, Part I: Proposed Approach and Application to Semidefinite Programming

Motivated by recent interest in group-symmetry in semidefinite programming, we propose a numerical method for finding a finest simultaneous block-diagonalization of a finite number of matrices, or equivalently the irreducible decomposition of the generated matrix *-algebra. The method is composed of numerical-linear algebraic computations such as eigenvalue computation, and automatically makes full use of the … Read more

Regularization methods for semidefinite programming

This paper studies an alternative technique to interior point methods and nonlinear methods for semidefinite programming (SDP). The approach based on classical quadratic regularizations leads to an algorithm, generalizing a recent method called “boundary point method”. We study the theoretical properties of this algorithm and we show that in practice it behaves very well on … Read more

Fast Computation of Optimal Contact Forces

We consider the problem of computing the smallest contact forces, with point-contact friction model, that can hold an object in equilibrium against a known external applied force and torque. It is known that the force optimization problem (FOP) can be formulated as a semidefinite programming problem (SDP), or a second-order cone problem (SOCP), and so … Read more

Properties of a Cutting Plane Method for Semidefinite Programming

We analyze the properties of an interior point cutting plane algorithm that is based on a semi-infinite linear formulation of the dual semidefinite program. The cutting plane algorithm approximately solves a linear relaxation of the dual semidefinite program in every iteration and relies on a separation oracle that returns linear cutting planes. We show that … Read more