A converging Benders’ decomposition algorithm for two-stage mixed-integer recourse models

We propose a new solution method for two-stage mixed-integer recourse models. In contrast to existing approaches, we can handle general mixed-integer variables in both stages, and thus, e.g., do not require that the first-stage variables are binary. Our solution method is a Benders’ decomposition, in which we iteratively construct tighter approximations of the expected second-stage … Read more

Moreau envelope of supremum functions with applications to infinite and stochastic programming

In this paper, we investigate the Moreau envelope of the supremum of a family of convex, proper, and lower semicontinuous functions. Under mild assumptions, we prove that the Moreau envelope of a supremum is the supremum of Moreau envelopes, which allows us to approximate possibly nonsmooth supremum functions by smooth functions that are also the … Read more

JuDGE.jl: a Julia package for optimizing capacity expansion

We present JuDGE.jl, an open-source Julia package for solving multistage stochastic capacity expansion problems using Dantzig-Wolfe decomposition. Models for JuDGE.jl are built using JuMP, the algebraic modelling language in Julia, and solved by repeatedly applying mixed-integer programming. We illustrate JuDGE.jl by formulating and solving a toy knapsack problem, and demonstrate the performance of JuDGE.jl on … Read more

A Parallel Hub-and-Spoke System for Large-Scale Scenario-Based Optimization Under Uncertainty

Efficient solution of stochastic programming problems generally requires the use of parallel computing resources. Here, we describe the open source package mpi-sppy, in which efficient and scalable parallelization is a central feature. We describe the overall architecture and provide computational examples and results showing scalability to the largest instances that we know of for the … Read more

Modeling Multi-stage Decision Making under Incomplete and Uncertain Information

We propose a new universal framework for multi-stage decision making under limited information availability. It is developed as part of a larger research project which aims at providing analytical methods to compare and evaluate different models and algorithms for multi-stage decision making. In our setting, we have an open time horizon and limited information about … Read more

Equivalent second-order cone programs for distributionally robust zero-sum games

We consider a two player zero-sum game with stochastic linear constraints. The probability distributions of the vectors associated with the constraints are partially known. The available information with respect to the distribution is based mainly on the two first moments. In this vein, we formulate the stochastic linear constraints as distributionally robust chance constraints. We … Read more

Optimizing Diesel Fuel Supply Chain Operations for Hurricane Relief

Hurricanes can cause severe property damage and casualties in coastal regions. Diesel fuel plays a crucial role in hurricane disaster relief. It is important to optimize fuel supply chain operations so that emergency demand for diesel can be mitigated in a timely manner. However, it can be challenging to estimate demand for fuel and make … Read more

A Model of Supply-Chain Decisions for Resource Sharing with an Application to Ventilator Allocation to Combat COVID-19

We present a stochastic optimization model for allocating and sharing a critical resource in the case of a pandemic. The demand for different entities peaks at different times, and an initial inventory for a central agency is to be allocated. The entities (states) may share the critical resource with a different state under a risk-averse … Read more

On a class of stochastic programs with exponentially many scenarios

We consider a class of stochastic programs whose uncertain data has an exponential number of possible outcomes, where scenarios are affinely parametrized by the vertices of a tractable binary polytope. Under these conditions, we propose a novel formulation that introduces a modest number of additional variables and a class of inequalities that can be efficiently … Read more

Scenario generation using historical data paths

In this paper, we present a method for generating scenarios by selection from historical data. We start with two models for a univariate single-period case and then extend the better-performing one to the case of selecting sequences of multivariate data. We then test the method on data series for wind- and solar-power generation in Scandinavia. … Read more