An SDP approach for multiperiod mixed 0–1 linear programming models with stochastic dominance constraints for risk management

In this paper we consider multiperiod mixed 0–1 linear programming models under uncertainty. We propose a risk averse strategy using stochastic dominance constraints (SDC) induced by mixed-integer linear recourse as the risk measure. The SDC strategy extends the existing literature to the multistage case and includes both first-order and second-order constraints. We propose a stochastic … Read more

Local Search for Hop-constrained Directed Steiner Tree Problem with Application to UAV-based Multi-target Surveillance

We consider the directed Steiner tree problem (DSTP) with a constraint on the total number of arcs (hops) in the tree. This problem is known to be NP-hard, and therefore, only heuristics can be applied in the case of its large-scale instances. For the hop-constrained DSTP, we propose local search strategies aimed at improving any … Read more

On fast trust region methods for quadratic models with linear constraints

Quadratic models Q_k(.) of the objective function F(.) are used by many successful iterative algorithms for minimization, where k is the iteration number. Given the vector of variables x_k, a new vector x_{k+1} may be calculated that satisfies Q_k(x_{k+1}) < Q_k(x_k), in the hope that it provides the reduction F(x_{k+1}) < F(x_k). Trust region methods ... Read more

On a new class of matrix support functionals with applications

A new class of matrix support functionals is presented which establish a connection between optimal value functions for quadratic optimization problems, the matrix-fractional function, the pseudo matrix-fractional function, and the nuclear norm. The support function is based on the graph of the product of a matrix with its transpose. Closed form expressions for the support … Read more

An Exact Extended Formulation for the Unrelated Parallel Machine Total Weighted Completion Time Problem

The plethora of research on NP-hard parallel machine scheduling problems is focused on heuristics due to the theoretically and practically challenging nature of these problems. Only a handful of exact approaches are available in the literature, and most of these suffer from scalability issues. Moreover, the majority of the papers on the subject are restricted … Read more

Matrix monotonicity and self-concordance:how to handle quantum entropy in optimization problems

Let $g$ be a continuously differentiable function whose derivative is matrix monotone on positive semi-axis. Such a function induces a function $\phi (x)=tr(g(x))$ on the cone of squares of an arbitrary Euclidean Jordan algebra. We show that $\phi (x) -\ln \det(x)$ is a self-concordant function on the interior of the cone. We also show that … Read more

How the augmented Lagrangian algorithm can deal with an infeasible convex quadratic optimization problem

This paper analyses the behavior of the augmented Lagrangian algorithm when it deals with an infeasible convex quadratic optimization problem. It is shown that the algorithm finds a point that, on the one hand, satisfies the constraints shifted by the smallest possible shift that makes them feasible and, on the other hand, minimizes the objective … Read more

Multilevel Optimization Modeling for Risk-Averse Stochastic Programming

Coherent risk measures have become a popular tool for incorporating risk aversion into stochastic optimization models. For dynamic models in which uncertainty is resolved at more than one stage, however, using coherent risk measures within a standard single-level optimization framework becomes problematic. To avoid severe time-consistency difficulties, the current state of the art is to … Read more

On the exact separation of rank inequalities for the maximum stable set problem

When addressing the maximum stable set problem on a graph G = (V,E), rank inequalities prescribe that, for any subgraph G[U] induced by U ⊆ V , at most as many vertices as the stability number of G[U] can be part of a stable set of G. These inequalities are very general, as many of … Read more