Best subset selection for eliminating multicollinearity

This paper proposes a method for eliminating multicollinearity from linear regression models. Specifically, we select the best subset of explanatory variables subject to the upper bound on the condition number of the correlation matrix of selected variables. We first develop a cutting plane algorithm that, to approximate the condition number constraint, iteratively appends valid inequalities … Read more

On the Existence of Ideal Solutions in Multi-objective 0-1 Integer Programs

We study conditions under which the objective functions of a multi-objective 0-1 integer linear program guarantee the existence of an ideal point, meaning the existence of a feasible solution that simultaneously minimizes all objectives. In addition, we study the complexity of recognizing whether a set of objective functions satisfies these conditions: we show that it … Read more

A Tractable Approach for designing Piecewise Affine Policies in Two-stage Adjustable Robust Optimization

We consider the problem of designing piecewise affine policies for two-stage adjustable robust linear optimization problems under right-hand side uncertainty. It is well known that a piecewise affine policy is optimal although the number of pieces can be exponentially large. A significant challenge in designing a practical piecewise affine policy is constructing good pieces of … Read more

Integer Programming Formulations for Minimum Deficiency Interval Coloring

A proper edge-coloring of a given undirected graph with natural numbers identified with colors is an interval (or consecutive) coloring if the colors of edges incident to each vertex form an interval of consecutive integers. Not all graphs admit such an edge-coloring and the problem of deciding whether a graph is interval colorable is NP-complete. … Read more

Online First-Order Framework for Robust Convex Optimization

Robust optimization (RO) has emerged as one of the leading paradigms to efficiently model parameter uncertainty. The recent connections between RO and problems in statistics and machine learning domains demand for solving RO problems in ever more larger scale. However, the traditional approaches for solving RO formulations based on building and solving robust counterparts or … Read more

Creating Standard Load Profiles in Residential and Commercial Sectors in Germany for 2016, 2025 and 2040

Standard load profiles (SLPs) are used to calculate the natural gas demand of non-daily metered customers based on temperature forecasts. The most recent version of natural gas SLPs in Germany was published by the Federal Association of Energy and Water in June 2015. With the concept SigLinDE, a linearization of the old SLPs was carried … Read more

Perturbation Analysis of Singular Semidefinite Program and Its Application to a Control Problem

We consider the sensitivity of semidefinite programs (SDPs) under perturbations. It is well known that the optimal value changes continuously under perturbations on the right hand side in the case where the Slater condition holds in the primal problems. In this manuscript, we observe by investigating a concrete SDP that the optimal value can be … Read more

Robust optimization of noisy blackbox problems using the Mesh Adaptive Direct Search algorithm

Blackbox optimization problems are often contaminated with numerical noise, and direct search methods such as the Mesh Adaptive Direct Search (MADS) algorithm may get stuck at solutions artificially created by the noise. We propose a way to smooth out the objective function of an unconstrained problem using previously evaluated function evaluations, rather than resampling points. … Read more

Moulin Mechanism Design for Freight Consolidation

In freight consolidation, a “fair” cost allocation scheme is critical for forming and sustaining horizontal cooperation that leads to reduced transportation cost. We study a cost-sharing problem in a freight consolidation system with one consolidation center and a common destination. In particular, we design a mechanism that collects bids from a set of suppliers, and … Read more

A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems

We develop a fast and robust algorithm for solving large scale convex composite optimization models with an emphasis on the $\ell_1$-regularized least squares regression (Lasso) problems. Despite the fact that there exist a large number of solvers in the literature for the Lasso problems, we found that no solver can efficiently handle difficult large scale … Read more