The forwarder planning problem in a two-echelon network

This paper is motivated by the case of a forwarder in dealing with inland transportation planning from a seaport, where inbound containers from the sea are filled with pallets, which have different destinations in the landside. Although this forwarder does not have or control any vehicle, he is required to plan the assignment of containers … Read more

A Dense initialization for limited-memory quasi-Newton methods

We consider a family of dense initializations for limited-memory quasi-Newton methods. The proposed initialization exploits an eigendecomposition-based separation of the full space into two complementary subspaces, assigning a different initialization parameter to each subspace. This family of dense initializations is proposed in the context of a limited-memory Broyden- Fletcher-Goldfarb-Shanno (L-BFGS) trust-region method that makes use … Read more

Minimizer extraction in polynomial optimization is robust

In this article we present a robustness analysis of the extraction of optimizers in polynomial optimization. Optimizers can be extracted by solving moment problems using flatness and the Gelfand-Naimark-Segal (GNS) construction. Here a modification of the GNS construction is presented that applies even to non-flat data, and then its sensitivity under perturbations is studied. The … Read more

Tightness of a new and enhanced semidefinite relaxation for MIMO detection

In this paper, we consider a fundamental problem in modern digital communications known as multi-input multi-output (MIMO) detection, which can be formulated as a complex quadratic programming problem subject to unit-modulus and discrete argument constraints. Various semidefinite relaxation (SDR) based algorithms have been proposed to solve the problem in the literature. In this paper, we … Read more

Primal-Dual Optimization Algorithms over Riemannian Manifolds: an Iteration Complexity Analysis

In this paper we study nonconvex and nonsmooth multi-block optimization over Riemannian manifolds with coupled linear constraints. Such optimization problems naturally arise from machine learning, statistical learning, compressive sensing, image processing, and tensor PCA, among others. We develop an ADMM-like primal-dual approach based on decoupled solvable subroutines such as linearized proximal mappings. First, we introduce … Read more

A multi-period production and distribution optimization model for radiopharmaceuticals

This paper addresses the manufacturing and distribution of short-lived radio-pharmaceuticals which are mainly used in diagnostic imaging studies. We develop a mixed integer nonlinear optimization model that is flexible enough to capture the complex underlying nuclear physics of the production process of fludeoxyglucose (FDG), which is widely used in oncology and cardiology, as well as … Read more

Enriching Solutions to Combinatorial Problems via Solution Engineering

Existing approaches to identify multiple solutions to combinatorial problems in practice are at best limited in their ability to simultaneously incorporate both diversity among generated solutions, as well as problem-specific desires that are apriori unknown, or at least difficult to articulate, for the end-user. We propose a general framework that can generate a set of … Read more

On the equivalence of the primal-dual hybrid gradient method and Douglas-Rachford splitting

The primal-dual hybrid gradient (PDHG) algorithm proposed by Esser, Zhang, and Chan, and by Pock, Cremers, Bischof, and Chambolle is known to include as a special case the Douglas-Rachford splitting algorithm for minimizing the sum of two convex functions. We show that, conversely, the PDHG algorithm can be viewed as a special case of the … Read more

Globally Solving the Trust Region Subproblem Using Simple First-Order Methods

We consider the trust region subproblem which is given by a minimization of a quadratic, not necessarily convex, function over the Euclidean ball. Based on the well-known second-order necessary and sufficient optimality conditions for this problem, we present two sufficient optimality conditions defined solely in terms of the primal variables. Each of these conditions corresponds … Read more

Energy Technology Environment Model with Smart Grid and Robust Nodal Electricity Prices

This paper deals with the modeling of power flow in a transmission grid within the multi-sectoral multi-energy long-term regional energy model ETEM-SG. This extension of the model allows a better representation of demand response for flexible loads triggered by nodal marginal cost pricing. To keep the global model in the realm of linear program- ming … Read more