Glider Routing and Trajectory Optimisation in Disaster Assessment

In this paper, we introduce the Glider Routing and Trajectory Optimisation Problem (GRTOP), the problem of finding simultaneously optimal routes and trajectories for a fleet of gliders with the aim of surveying a set of locations. We propose a novel Mixed-Integer Nonlinear Programming (MINLP) formulation for the GRTOP, which simultaneously optimises the routes as well … Read more

A Hierarchical Alternating Direction Method of Multipliers for Fully Distributed Unit Commitment

Abstract—This paper discusses a hierarchical alternating direction method of multipliers (ADMM) approach for the unit commitment (UC) problem in a fully distributed manner. Decentralized unit commitment operation schemes have several advantages when compared with the traditional centralized management system for smart grid. Specifically, decentralized management is more flexible, less computationally intensive, and easier to implement … Read more

Clustering and Multifacility Location with Constraints via Distance Function Penalty Method and DC Programming

This paper is a continuation of our effort in using mathematical optimization involving DC programming in clustering and multifacility location. We study a penalty method based on distance functions and apply it particularly to a number of problems in clustering and multifacility location in which the centers to be found must lie in some given … Read more

Algorithmic Results for Potential-Based Flows: Easy and Hard Cases

Potential-based flows are an extension of classical network flows in which the flow on an arc is determined by the difference of the potentials of its incident nodes. Such flows are unique and arise, for example, in energy networks. Two important algorithmic problems are to determine whether there exists a feasible flow and to maximize … Read more

Finding a best approximation pair of points for two polyhedra

Given two disjoint convex polyhedra, we look for a best approximation pair relative to them, i.e., a pair of points, one in each polyhedron, attaining the minimum distance between the sets. Cheney and Goldstein showed that alternating projections onto the two sets, starting from an arbitrary point, generate a sequence whose two interlaced subsequences converge … Read more

Robust Combinatorial Optimization under Budgeted-Ellipsoidal Uncertainty

In the field of robust optimization uncertain data is modeled by uncertainty sets, i.e. sets which contain all relevant outcomes of the uncertain parameters. The complexity of the related robust problem depends strongly on the shape of the uncertainty set. Two popular classes of uncertainty are budgeted uncertainty and ellipsoidal uncertainty. In this paper we … Read more

Implementing the ADMM to Big Datasets: A Case Study of LASSO

The alternating direction method of multipliers (ADMM) has been popularly used for a wide range of applications in the literature. When big datasets with high-dimensional variables are considered, subproblems arising from the ADMM must be solved inexactly even though theoretically they may have closed-form solutions. Such a scenario immediately poses mathematical ambiguities such as how … Read more

Nonconvex piecewise linear functions: Advanced formulations and simple modeling tools

We present novel mixed-integer programming (MIP) formulations for (nonconvex) piecewise linear functions. Leveraging recent advances in the systematic construction of MIP formulations for disjunctive sets, we derive new formulations for univariate functions using a geometric approach, and for bivariate functions using a combinatorial approach. All formulations derived are small (logarithmic in the number of piecewise … Read more

Randomized Similar Triangles Method: A Unifying Framework for Accelerated Randomized Optimization Methods (Coordinate Descent, Directional Search, Derivative-Free Method)

In this paper, we consider smooth convex optimization problems with simple constraints and inexactness in the oracle information such as value, partial or directional derivatives of the objective function. We introduce a unifying framework, which allows to construct different types of accelerated randomized methods for such problems and to prove convergence rate theorems for them. … Read more

Benders decomposition of the resource constrained project scheduling problem

Problem instances found in the literature that are used in computational studies of the resource constrained project scheduling problem, typically include only a few resources. In some practical applications, however, the number of resources may be significantly higher. In this paper, problem instances with a large number of resources are considered and a Benders decomposition … Read more