A Shifted Primal-Dual Interior Method for Nonlinear Optimization

Interior methods provide an effective approach for the treatment of inequality constraints in nonlinearly constrained optimization. A new primal-dual interior method is proposed based on minimizing a sequence of shifted primal-dual penalty-barrier functions. Certain global convergence properties are established. In particular, it is shown that every limit point is either an infeasible stationary point, or … Read more

A deterministic algorithm for solving stochastic minimax dynamic programmes

In this paper, we present an algorithm for solving stochastic minimax dynamic programmes where state and action sets are convex and compact. A feature of the formulations studied is the simultaneous non-rectangularity of both `min’ and `max’ feasibility sets. We begin by presenting convex programming upper and lower bound representations of saddle functions — extending … Read more

A Notion of Total Dual Integrality for Convex, Semidefinite, and Extended Formulations

Total dual integrality is a powerful and unifying concept in polyhedral combinatorics and integer programming that enables the refinement of geometric min-max relations given by linear programming Strong Duality into combinatorial min-max theorems. The definition of total dual integrality (TDI) revolves around the existence of optimal dual solutions that are integral, and thus naturally applies … Read more

An Alternating Minimization Method for Matrix Completion Problem

In this paper, we focus on solving matrix completion problem arising from applications in the fields of information theory, statistics, engineering, etc. However, the matrix completion problem involves nonconvex rank constraints which make this type of problem difficult to handle. Traditional approaches use a nuclear norm surrogate to replace the rank constraints. The relaxed model … Read more

On self-concordant barriers for generalized power cones

In the study of interior-point methods for nonsymmetric conic optimization and their applications, Nesterov introduced the power cone, together with a 4-self-concordant barrier for it. In his PhD thesis, Chares found an improved 3-self-concordant barrier for the power cone. In addition, he introduced the generalized power cone, and conjectured a nearly optimal self-concordant barrier for … Read more

Least cost influence propagation in (social) networks

Influence maximization problems aim to identify key players in (social) networks and are typically motivated from viral marketing. In this work, we introduce and study the Generalized Least Cost Influence Problem (GLCIP) that generalizes many previously considered problem variants and allows to overcome some of their limitations. A formulation that is based on the concept … Read more

The Continuous Time Inventory Routing Problem

We consider a continuous time variant of the Inventory Routing Problem in which the maximum quantity that can delivered at a customer depends on the customer’s storage capacity and product inventory at the time of the delivery. We investigate critical components of a dynamic discretization discovery algorithm and demonstrate in an extensive computational study that … Read more

On Quasi-Newton Forward–Backward Splitting: Proximal Calculus and Convergence

We introduce a framework for quasi-Newton forward–backward splitting algorithms (proximal quasi-Newton methods) with a metric induced by diagonal +/- rank-r symmetric positive definite matrices. This special type of metric allows for a highly efficient evaluation of the proximal mapping. The key to this efficiency is a general proximal calculus in the new metric. By using … Read more

A polynomial time algorithm for the linearization problem of the QSPP and its applications

Given an instance of the quadratic shortest path problem (QSPP) on a digraph $G$, the linearization problem for the QSPP asks whether there exists an instance of the linear shortest path problem on $G$ such that the associated costs for both problems are equal for every $s$-$t$ path in $G$. We prove here that the … Read more

The Clique Problem with Multiple-Choice Constraints under a Cycle-Free Dependency Graph

The clique problem with multiple-choice constraints (CPMC) represents a very common substructure in many real-world applications, for example scheduling problems with precedence constraints. It consists in finding a clique in a graph whose nodes are partitioned into subsets, such that exactly one node from each subset is chosen. Even though we can show that (CPMC) … Read more