Revisiting the Hamiltonian p-median problem: a new formulation on directed graphs and a branch-and-cut algorithm

This paper studies the Hamiltonian p-median problem defined on a directed graph, which consists of finding p mutually disjoint circuits of minimum total cost, such that each node of the graph is included in one of the circuits. Earlier formulations are based on viewing the problem as one resulting from the intersection of two subproblems. … Read more

SOS-Convex Lyapunov Functions and Stability of Difference Inclusions

We introduce the concept of sos-convex Lyapunov functions for stability analysis of both linear and nonlinear difference inclusions (also known as discrete-time switched systems). These are polynomial Lyapunov functions that have an algebraic certificate of convexity and that can be efficiently found via semidefinite programming. We prove that sos-convex Lyapunov functions are universal (i.e., necessary … Read more

On Algebraic Proofs of Stability for Homogeneous Vector Fields

We prove that if a homogeneous, continuously differentiable vector field is asymptotically stable, then it admits a Lyapunov function which is the ratio of two polynomials (i.e., a rational function). We further show that when the vector field is polynomial, the Lyapunov inequalities on both the rational function and its derivative have sum of squares … Read more

On stochastic auctions in risk-averse electricity markets with uncertain supply

This paper studies risk in a stochastic auction which facilitates the integration of renewable generation in electricity markets. We model market participants who are risk averse and reflect their risk aversion through coherent risk measures. We uncover a closed-form characterization of a risk-averse generator’s optimal pre-commitment behaviour for a given real-time policy, both with and … Read more

A Distributed Quasi-Newton Algorithm for Empirical Risk Minimization with Nonsmooth Regularization

We propose a communication- and computation-efficient distributed optimization algorithm using second-order information for solving ERM problems with a nonsmooth regularization term. Current second-order and quasi-Newton methods for this problem either do not work well in the distributed setting or work only for specific regularizers. Our algorithm uses successive quadratic approximations, and we describe how to … Read more

Inexact Successive Quadratic Approximation for Regularized Optimization

Successive quadratic approximations, or second-order proximal methods, are useful for minimizing functions that are a sum of a smooth part and a convex, possibly nonsmooth part that promotes regularization. Most analyses of iteration complexity focus on the special case of proximal gradient method, or accelerated variants thereof. There have been only a few studies of … Read more

On an Elliptical Trust-Region Procedure for Ill-Posed Nonlinear Least-Squares Problems

In this paper we address the stable numerical solution of ill-posed nonlinear least-squares problems with small residual. We propose an elliptical trust-region reformulation of a Levenberg-Marquardt procedure. Thanks to an appropriate choice of the trust-region radius, the proposed procedure guarantees an automatic choice of the free regularization parameters that, together with a suitable stopping criterion, … Read more

A Trust Region Algorithm for Heterogeneous Multiobjective Optimization

This paper presents a new trust region method for multiobjective heterogeneous optimization problems. One of the objective functions is an expensive black-box function, for example given by a time-consuming simulation. For this function derivative information cannot be used and the computation of function values involves high computational effort. The other objective functions are given analytically … Read more

Exact and heuristic algorithms for finding envy-free allocations in food rescue pickup and delivery logistics

Food rescue organizations collect and re-distribute surplus perishable food for hunger relief. We propose novel approaches to address this humanitarian logistics challenge and find envy-free allocations of the rescued food together with least travel cost routes. We show that this food rescue and delivery problem is NP-hard and we present a cutting-plane algorithm based on … Read more

Can cut generating functions be good and efficient?

Making cut generating functions (CGFs) computationally viable is a central question in modern integer programming research. One would like to nd CGFs that are simultaneously good, i.e., there are good guarantees for the cutting planes they generate, and ecient, meaning that the values of the CGFs can be computed cheaply (with procedures that have some … Read more