Bookings in the European Gas Market: Characterisation of Feasibility and Computational Complexity Results

As a consequence of the liberalisation of the European gas market in the last decades, gas trading and transport have been decoupled. At the core of this decoupling are so-called bookings and nominations. Bookings are special capacity right contracts that guarantee that a specified amount of gas can be supplied or withdrawn at certain entry … Read more

Insight into the computation of Steiner minimal trees in Euclidean space of general dimension

We present well known properties related to the topology of Steiner minimal trees and to the geometric position of Steiner points, and investigate their application in the main exact algorithms that have been proposed for the Euclidean Steiner problem. We discuss the difficulty in the application of properties that were very successfully applied to solve … Read more

A Linear Programming Based Approach to the Steiner Tree Problem with a Fixed Number of Terminals

We present a set of integer programs (IPs) for the Steiner tree problem with the property that the best solution obtained by solving all, provides an optimal Steiner tree. Each IP is polynomial in the size of the underlying graph and our main result is that the linear programming (LP) relaxation of each IP is … Read more

On inexact relative-error hybrid proximal extragradient, forward-backward and Tseng’s modified forward-backward methods with inertial effects

In this paper, we propose and study the asymptotic convergence and nonasymptotic global convergence rates (iteration-complexity) of an inertial under-relaxed version of the relative-error hybrid proximal extragradient (HPE) method for solving monotone inclusion problems. We analyze the proposed method under more flexible assumptions than existing ones on the extrapolation and relative-error parameters. As applications, we … Read more

Convergence of Finite-Dimensional Approximations for Mixed-Integer Optimization with Differential Equations

We consider a direct approach to solve mixed-integer nonlinear optimization problems with constraints depending on initial and terminal conditions of an ordinary differential equation. In order to obtain a finite-dimensional problem, the dynamics are approximated using discretization methods. In the framework of general one-step methods, we provide sufficient conditions for the convergence of this approach … Read more

A New Extended Formulation with Valid Inequalities for the Capacitated Concentrator Location Problem

In this paper, we first present a new extended formulation of the Capacitated Concentrator Location Problem (CCLP) using the notion of cardinality of terminals assigned to a concentrator location. The disaggregated formulation consists of O(mn2) variables and constraints, where m denotes the number of concentrators and n the number of terminals. An immediate benefit of … Read more

The Sard theorem for essentially smooth locally Lipschitz maps and applications in optimization

The classical Sard theorem states that the set of critical values of a $C^{k}$-map from an open set of $\R^n$ to $\R^p$ ($n\geq p$) has Lebesgue measure zero provided $k\geq n-p+1$. In the recent paper by Barbet, Dambrine, Daniilidis and Rifford, the so called “preparatory Sard theorem” for a compact countable set $I$ of $C^k$ … Read more

Policies for Inventory Models with Product Returns Forecast from Past Demands and Past Sales

Finite horizon periodic review backlog models are considered in this paper for an inventory system that remanufactures two types of cores: buyback cores and normal cores. Returns of used products as buyback cores are modelled to depend on past demands and past sales. We obtain an optimal inventory policy for the model in which returns … Read more

Group sparse recovery in impulsive noise via alternating direction method of multipliers

In this paper, we consider the recovery of group sparse signals corrupted by impulsive noise. In some recent literature, researchers have utilized stable data fitting models, like $l_1$-norm, Huber penalty function and Lorentzian-norm, to substitute the $l_2$-norm data fidelity model to obtain more robust performance. In this paper, a stable model is developed, which exploits … Read more

A New Face Method for Linear Programming

An attractive feature of the face method \cite{pan14} for solving LP problems is that it uses the orthogonal projection of the negative objective gradient on the related null space as the search direction. However, the method would not be amenable for solving large sparse problems, since it handles the involved normal system by orthogonal transformations. … Read more