Monitoring With Limited Information

We consider a system with an evolving state that can be stopped at any time by a decision maker (DM), yielding a state-dependent reward. The DM does not observe the state except for a limited number of monitoring times, which he must choose, in conjunction with a suitable stopping policy, to maximize his reward. Dealing … Read more

Improved Regularity Assumptions for Partial Outer Convexification of Mixed-Integer PDE-Constrained Optimization problems

Partial outer convexification is a relaxation technique for MIOCPs being constrained by time-dependent differential equations. Sum-Up-Rounding algorithms allow to approximate feasible points of the relaxed, convexified continuous problem with binary ones that are feasible up to an arbitrarily small $\delta > 0$. We show that this approximation property holds for ODEs and semilinear PDEs under … Read more

Representation of distributionally robust chance-constraints

Given $X\subset R^n$, $\varepsilon \in (0,1)$, a parametrized family of probability distributions $(\mu_{a})_{a\in A}$ on $\Omega\subset R^p$, we consider the feasible set $X^*_\varepsilon\subset X$ associated with the {\em distributionally robust} chance-constraint \[X^*_\varepsilon\,=\,\{x\in X:\:{\rm Prob}_\mu[f(x,\omega)\,>\,0]> 1-\varepsilon,\,\forall\mu\in\mathscr{M}_a\},\] where $\mathscr{M}_a$ is the set of all possibles mixtures of distributions $\mu_a$, $a\in A$. For instance and typically, the family … Read more

Moments and convex optimization for analysis and control of nonlinear partial differential equations

This work presents a convex-optimization-based framework for analysis and control of nonlinear partial differential equations. The approach uses a particular weak embedding of the nonlinear PDE, resulting in a \emph{linear} equation in the space of Borel measures. This equation is then used as a constraint of an infinite-dimensional linear programming problem (LP). This LP is … Read more

Approximation Properties of Sum-Up Rounding in the Presence of Vanishing Constraints

Approximation algorithms like sum-up rounding that allow to compute integer-valued approximations of the continuous controls in a weak$^*$ sense have attracted interest recently. They allow to approximate (optimal) feasible solutions of continuous relaxations of mixed-integer control problems (MIOCPs) with integer controls arbitrarily close. To this end, they use compactness properties of the underlying state equation, … Read more

Fast Multilevel Algorithms for Compressive Principle Component Pursuit

Recovering a low-rank matrix from highly corrupted measurements arises in compressed sensing of structured high-dimensional signals (e.g., videos and hyperspectral images among others). Robust principal component analysis (RPCA), solved via principal component pursuit (PCP), recovers a low-rank matrix from sparse corruptions that are of unknown value and support by decomposing the observation matrix into two … Read more

Primal-Dual Interior-Point Methods for Domain-Driven Formulations: Algorithms

We study infeasible-start primal-dual interior-point methods for convex optimization problems given in a typically natural form we denote as Domain-Driven formulation. Our algorithms extend many advantages of primal-dual interior-point techniques available for conic formulations, such as the current best complexity bounds, and more robust certificates of approximate optimality, unboundedness, and infeasibility, to Domain-Driven formulations. The … Read more

Complexity of gradient descent for multiobjective optimization

A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper we analyze the rate of convergence of gradient descent for smooth unconstrained multiobjective … Read more

On Integer and MPCC Representability of Affine Sparsity

In addition to sparsity, practitioners of statistics and machine learning often wish to promote additional structures in their variable selection process to incorporate prior knowledge. Borrowing the modeling power of linear systems with binary variables, many of such structures can be faithfully modeled as so-called affine sparsity constraints (ASC). In this note we study conditions … Read more

New inertial factors of a splitting method for monotone inclusions

In this article, we consider monotone inclusions of two operators in real Hilbert spaces, in which one is further assumed to be Lipschitz continuous, and we suggest adding an inertial term to a splitting method at each iteration. The associated weak convergence is analyzed under standard assumptions. The way of choosing steplength is self-adaptive via … Read more