Bridging Bayesian and Minimax Mean Square Error Estimation via Wasserstein Distributionally Robust Optimization

We introduce a distributionally robust minimium mean square error estimation model with a Wasserstein ambiguity set to recover an unknown signal from a noisy observation. The proposed model can be viewed as a zero-sum game between a statistician choosing an estimator—that is, a measurable function of the observation—and a fictitious adversary choosing a prior—that is, … Read more

Convergence Analysis and a DC Approximation Method for Data-driven Mathematical Programs with Distributionally Robust Chance Constraints

In this paper, we consider the convergence analysis of data-driven mathematical programs with distributionally robust chance constraints (MPDRCC) under weaker conditions without continuity assumption of distributionally robust probability functions. Moreover, combining with the data-driven approximation, we propose a DC approximation method to MPDRCC without some special tractable structures. We also give the convergence analysis of … Read more

Supermodularity in Two-Stage Distributionally Robust Optimization

In this paper, we solve a class of two-stage distributionally robust optimization problems which have the property of supermodularity. We exploit the explicit upper bounds on the expectation of supermodular functions and derive the worst-case distribution for the robust counterpart. This enables us to develop an efficient method to derive an exact optimal solution of … Read more

Optimization and Validation of Pumping System Design and Operation for Water Supply in High-Rise Buildings

The application of mathematical optimization methods provides the capacity to increase the energy efficiency and to lower the investment costs of technical systems, considerably. We present a system approach for the optimization of the design and operation of pumping systems and exemplify it by applying it to the water supply of high-rise buildings. The underlying … Read more

A Framework for Mathematical Optimization in Microservice Architectures

In the last years, the gap between solution methods in literature and optimization running in production has increased. Agile development practices, DevOps and modern cloud-based infrastructure call for a revisit of how optimization software is developed. We review the state-of-the-art, propose a development framework that can be applied across different programming languages and modeling frameworks … Read more

Persistency of Linear Programming Formulations for the Stable Set Problem

The Nemhauser-Trotter theorem states that the standard linear programming (LP) formulation for the stable set problem has a remarkable property, also known as (weak) persistency: for every optimal LP solution that assigns integer values to some variables, there exists an optimal integer solution in which these variables retain the same values. While the standard LP … Read more

Exploiting Aggregate Sparsity in Second Order Cone Relaxations for Quadratic Constrained Quadratic Programming Problems

Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. (2001) and second-order cone programming (SOCP) relaxation have been popular. In this paper, we exploit the aggregate sparsity of SOCP … Read more

Minimizing Airplane Boarding Time

The time it takes passengers to board an airplane is known to influence the turn-around time of the aircraft and thus bears a significant cost-saving potential for airlines. Although minimizing boarding time therefore is the most important goal from an economic perspective, previous efforts to design efficient boarding strategies apparently never tackled this task directly. … Read more

Understanding Limitation of Two Symmetrized Orders by Worst-case Complexity

It was recently found that the standard version of multi-block cyclic ADMM diverges. Interestingly, Gaussian Back Substitution ADMM (GBS-ADMM) and symmetric Gauss-Seidel ADMM (sGS-ADMM) do not have the divergence issue. Therefore, it seems that symmetrization can improve the performance of the classical cyclic order. In another recent work, cyclic CD (Coordinate Descent) was shown to … Read more

Exact Methods for the Traveling Salesman Problem with Drone

Efficiently handling last-mile deliveries becomes more and more important nowadays. Using drones to support classical vehicles allows improving delivery schedules as long as efficient solution methods to plan last-mile deliveries with drones are available. We study exact solution approaches for some variants of the traveling salesman problem with drone (TSP-D) in which a truck and … Read more