A Scenario-Based Approach for the Vehicle Routing Problem with Roaming Delivery Locations under Stochastic Travel Times

We address a stochastic variant of the Vehicle Routing Problem with Roaming Delivery Locations. In this model, direct-to-consumer deliveries can be made in the trunk of the customer’s car, while the vehicle is parked at a location along the customer’s itinerary. The stochasticity arises from the uncertainty in travel times and the problem is formulated … Read more

The Nutritious Supply Chain: Optimizing Humanitarian Food Aid

The World Food Programme (WFP) is the largest humanitarian agency fighting hunger worldwide, reaching around 90 million people with food assistance in 80 countries each year. To deal with the operational complexities inherent in its mandate, WFP has been developing tools to assist its decision makers with integrating supply chain decisions across departments and functional … Read more

Pricing for Delivery Time Flexibility

We study a variant of the multi-period vehicle routing problem, in which a service provider offers a discount to customer in exchange for delivery flexibility. We establish theoretical properties and empirical insights regarding the intricate and complex relation between the benefit from additional delivery flexibility, the discounts offered to customers to gain additional delivery flexibility, … Read more

Stochastic Lipschitz Dynamic Programming

We propose a new algorithm for solving multistage stochastic mixed integer linear programming (MILP) problems with complete continuous recourse. In a similar way to cutting plane methods, we construct nonlinear Lipschitz cuts to build lower approximations for the non-convex cost to go functions. An example of such a class of cuts are those derived using … Read more

Detection and Transformation of Second-Order Cone Programming Problems in a General-Purpose Algebraic Modeling Language

Diverse forms of nonlinear optimization problems can be recast to the special form of second-order cone problems (SOCPs), permitting a wider variety of highly effective solvers to be applied. Popular solvers assume, however, that the necessary transformations to required canonical forms have already been identified and carried out. We describe a general approach to the … Read more

New inertial factors of the Krasnoselskii-Mann iteration

In this article, we consider the Krasnosel’ski\u{\i}-Mann iteration for approximating a fixed point of any given non-expansive operator in real Hilbert spaces, and we study an inertial version proposed by Maing\'{e} recently. As a result, we suggest new conditions on the inertial factors to ensure weak convergence. They are free of iterates and depend on … Read more

A Proximal Interior Point Algorithm with Applications to Image Processing

In this article, we introduce a new proximal interior point algorithm (PIPA). This algorithm is able to handle convex optimization problems involving various constraints where the objective function is the sum of a Lipschitz differentiable term and a possibly nonsmooth one. Each iteration of PIPA involves the minimization of a merit function evaluated for decaying … Read more

A Theoretical and Empirical Comparison of Gradient Approximations in Derivative-Free Optimization

In this paper, we analyze several methods for approximating gradients of noisy functions using only function values. These methods include finite differences, linear interpolation, Gaussian smoothing and smoothing on a unit sphere. The methods differ in the number of functions sampled, the choice of the sample points, and the way in which the gradient approximations … Read more

A mixed-integer optimization approach to an exhaustive cross-validated model selection for regression

We consider a linear regression model for which we assume that many of the observed regressors are irrelevant for the prediction. To avoid overfitting, we conduct a variable selection and only include the true predictors for the least square fitting. The best subset selection gained much interest in recent years for addressing this objective. For … Read more

Polyhedral approximations of the semidefinite cone and their application

We develop techniques to construct a series of sparse polyhedral approximations of the semidefinite cone. Motivated by the semidefinite (SD) bases proposed by Tanaka and Yoshise (2018), we propose a simple expansion of SD bases so as to keep the sparsity of the matrices composing it. We prove that the polyhedral approximation using our expanded … Read more