Valid inequalities for quadratic optimisation with domain constraints

In 2013, Buchheim and Wiegele introduced a quadratic optimisation problem, in which the domain of each variable is a closed subset of the reals. This problem includes several other important problems as special cases. We study some convex sets and polyhedra associated with the problem, and derive several families of strong valid inequalities. We also … Read more

Branch-and-Refine for Solving Time-Dependent Problems

One of the standard approaches for solving time-dependent discrete optimization problems, such as the traveling salesman problem with time-windows or the shortest path problem with time-windows, is to derive a so-called time-indexed formulation. If the problem has an underlying structure that can be described by a graph, the time-indexed formulation is usually based on a … Read more

An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias

Structured non-convex learning problems, for which critical points have favorable statistical properties, arise frequently in statistical machine learning. Algorithmic convergence and statistical estimation rates are well-understood for such problems. However, quantifying the uncertainty associated with the underlying training algorithm is not well-studied in the non-convex setting. In order to address this short-coming, in this work, … Read more

Calmness of a perturbed Cournot Oligopoly Game with nonsmooth cost functions

This article deals with the calmness of a solution map of a Cournot Oligopoly Game with nonsmooth cost functions. The fact that the cost functions are not supposed to be differentiable allows for considering cases where some firms have diferent units of production, which have diferent marginal costs. In order to obtain results about the … Read more

A Line-Search Descent Algorithm for Strict Saddle Functions with Complexity Guarantees

We describe a line-search algorithm which achieves the best-known worst-case complexity results for problems with a certain “strict saddle” property that has been observed to hold in low-rank matrix optimization problems. Our algorithm is adaptive, in the sense that it makes use of backtracking line searches and does not require prior knowledge of the parameters … Read more

Modeling Multi-stage Decision Making under Incomplete and Uncertain Information

We propose a new universal framework for multi-stage decision making under limited information availability. It is developed as part of a larger research project which aims at providing analytical methods to compare and evaluate different models and algorithms for multi-stage decision making. In our setting, we have an open time horizon and limited information about … Read more

An exact method for influence maximization based on deterministic linear threshold model

Influence maximization (IM) is a challenging combinatorial optimization problem on (social) networks given a diffusion model and limited choice for initial seed nodes. In a recent paper an integer programming formalization of IM using the so-called deterministic linear threshold diffusion model was proposed. In fact, it is a special 0-1 linear program in which the … Read more

The block mutual coherence property condition for signal recovery

Compressed sensing shows that a sparse signal can stably be recovered from incomplete linear measurements. But, in practical applications, some signals have additional structure, where the nonzero elements arise in some blocks. We call such signals as block-sparse signals. In this paper, the $\ell_2/\ell_1-\alpha\ell_2$ minimization method for the stable recovery of block-sparse signals is investigated. … Read more

The use of multi-criteria decision-making methods in project portfolio selection: a literature review and future research directions

In most project portfolio selection (PPS) situations, the presence of multiple attributes and decision-maker preference is inevitable. As Multi-criteria Decision Analysis (MCDA) methods provide a framework well-suited to deal with these challenges in PPS problems, the use of MCDA methods in real-life PPS problems has increased in recent years. This paper provides a comprehensive literature … Read more

ROC++: Robust Optimization in C++

Over the last two decades, robust optimization has emerged as a popular means to address decision-making problems affected by uncertainty. This includes single- and multi-stage problems involving real-valued and/or binary decisions, and affected by exogenous (decision-independent) and/or endogenous (decision-dependent) uncertain parameters. Robust optimization techniques rely on duality theory potentially augmented with approximations to transform a … Read more