Efficient Algorithms for Multi-Threaded Interval Scheduling with Machine Availabilities

In the known Interval Scheduling Problem with Machine Availabilities (ISMA), each machine has a contiguous availability interval and each job has a specific time interval which has to be scheduled. The objective is to schedule all jobs such that the machines’ availability intervals are respected or to decide that there exists no such schedule. We … Read more

New Bregman proximal type algorithms for solving DC optimization problems

Difference of Convex (DC) optimization problems have objective functions that are differences between two convex functions. Representative ways of solving these problems are the proximal DC algorithms, which require that the convex part of the objective function have L-smoothness. In this article, we propose the Bregman Proximal DC Algorithm (BPDCA) for solving large-scale DC optimization … Read more

Sums of Separable and Quadratic Polynomials

We study separable plus quadratic (SPQ) polynomials, i.e., polynomials that are the sum of univariate polynomials in different variables and a quadratic polynomial. Motivated by the fact that nonnegative separable and nonnegative quadratic polynomials are sums of squares, we study whether nonnegative SPQ polynomials are (i) the sum of a nonnegative separable and a nonnegative … Read more

Radial Duality Part I: Foundations

(Renegar, 2016) introduced a novel approach to transforming generic conic optimization problems into unconstrained, uniformly Lipschitz continuous minimization. We introduce radial transformations generalizing these ideas, equipped with an entirely new motivation and development that avoids any reliance on convex cones or functions. Perhaps of greatest practical importance, this facilitates the development of new families of … Read more

Radial Duality Part II: Applications and Algorithms

The first part of this work established the foundations of a radial duality between nonnegative optimization problems, inspired by the work of (Renegar, 2016). Here we utilize our radial duality theory to design and analyze projection-free optimization algorithms that operate by solving a radially dual problem. In particular, we consider radial subgradient, smoothing, and accelerated … Read more

Beyond Symmetry: Best Submatrix Selection for the Sparse Truncated SVD

Truncated singular value decomposition (SVD), also known as the best low-rank matrix approximation, has been successfully applied to many domains such as biology, healthcare, and others, where high-dimensional datasets are prevalent. To enhance the interpretability of the truncated SVD, sparse SVD (SSVD) is introduced to select a few rows and columns of the original matrix … Read more

Total Coloring and Total Matching: Polyhedra and Facets

A total coloring of a graph G = (V, E) is an assignment of colors to vertices and edges such that neither two adjacent vertices nor two incident edges get the same color, and, for each edge, the end-points and the edge itself receive a different color. Any valid total coloring induces a partition of … Read more

A Scalable Lower Bound for the Worst-Case Relay Attack Problem on the Transmission Grid

We consider a bilevel attacker-defender problem to find the worst-case attack on the relays that control transmission grid components. The attacker infiltrates some number of relays and renders all of the components connected to them inoperable, with the goal of maximizing load shed. The defender responds by minimizing the resulting load shed, re-dispatching using a … Read more

Parallel Strategies for Direct Multisearch

Direct Multisearch (DMS) is a Derivative-free Optimization class of algorithms suited for computing approximations to the complete Pareto front of a given Multiobjective Optimization problem. It has a well-supported convergence analysis and simple implementations present a good numerical performance, both in academic test sets and in real applications. Recently, this numerical performance was improved with … Read more

An Accelerated Minimal Gradient Method with Momentum for Convex Quadratic Optimization

In this article we address the problem of minimizing a strictly convex quadratic function using a novel iterative method. The new algorithm is based on the well–known Nesterov’s accelerated gradient method. At each iteration of our scheme, the new point is computed by performing a line–search scheme using a search direction given by a linear … Read more