Solution to a Monotone Inclusion Problem using the Relaxed Peaceman-Rachford Splitting Method: Convergence and its Rates

We consider the convergence behavior using the relaxed Peaceman-Rachford splitting method to solve the monotone inclusion problem $0 \in (A + B)(u)$, where $A, B: \Re^n \rightrightarrows \Re^n$ are maximal $\beta$-strongly monotone operators, $n \geq 1$ and $\beta > 0$. Under a technical assumption, convergence of iterates using the method on the problem is proved … Read more

On Componental Operators in Hilbert Space

We consider a Hilbert space that is a product of a finite number of Hilbert spaces and operators that are represented by “componental operators” acting on the Hilbert spaces that form the product space. We attribute operatorial properties to the componental operators rather than to the full operators. The operatorial properties that we discuss include … Read more

Balancing preferential access and fairness with an application to waste management: mathematical models, optimality conditions, and heuristics

Typically, within facility location problems, fairness is defined in terms of accessibility of users. However, for facilities perceived as undesirable by communities hosting them, fairness between the usage of facilities becomes especially important. Limited research exists on this notion of fairness. To close this gap, we develop an optimization framework for the allocation of populations … Read more

Strong duality of a conic optimization problem with a single hyperplane and two cone constraints

Strong (Lagrangian) duality of general conic optimization problems (COPs) has long been studied and its profound and complicated results appear in different forms in a wide range of literatures. As a result, characterizing the known and unknown results can sometimes be difficult. The aim of this article is to provide a unified and geometric view … Read more

Convex Chance-Constrained Programs with Wasserstein Ambiguity

Chance constraints yield non-convex feasible regions in general. In particular, when the uncertain parameters are modeled by a Wasserstein ball, [Xie19] and [CKW18] showed that the distributionally robust (pessimistic) chance constraint admits a mixed-integer conic representation. This paper identifies sufficient conditions that lead to convex feasible regions of chance constraints with Wasserstein ambiguity. First, when … Read more

Globalized Distributionally Robust Counterpart

We extend the notion of globalized robustness to consider distributional information beyond the support of the ambiguous probability distribution. We propose the globalized distributionally robust counterpart that disallows any (resp., allows limited) constraint violation for distributions residing (resp., not residing) in the ambiguity set. By varying its inputs, our proposal recovers several existing perceptions of … Read more

Mirror-prox sliding methods for solving a class of monotone variational inequalities

In this paper we propose new algorithms for solving a class of structured monotone variational inequality (VI) problems over compact feasible sets. By identifying the gradient components existing in the operator of VI, we show that it is possible to skip computations of the gradients from time to time, while still maintaining the optimal iteration … Read more

Adaptive discretization-based algorithms for semi-infinite programs with unbounded variables

The proof of convergence of adaptive discretization-based algorithms for semi-infinite programs (SIPs) usually relies on compact host sets for the upper- and lower-level variables. This assumption is violated in some applications, and we show that indeed convergence problems can arise when discretization-based algorithms are applied to SIPs with unbounded variables. To mitigate these convergence problems, … Read more

Quadratic Regularization Methods with Finite-Difference Gradient Approximations

This paper presents two quadratic regularization methods with finite-difference gradient approximations for smooth unconstrained optimization problems. One method is based on forward finite-difference gradients, while the other is based on central finite-difference gradients. In both methods, the accuracy of the gradient approximations and the regularization parameter in the quadratic models are jointly adjusted using a … Read more

Network Migration Problem: A Logic-based Benders Decomposition Driven by Column Generation and Constraint Programming

Telecommunication networks frequently face technological advancements and need to upgrade their infrastructure. Adapting legacy networks to the latest technology requires synchronized technicians responsible for migrating the equipment. The goal of the network migration problem is to find an optimal plan for this process. This is a defining step in the customer acquisition of telecommunications service … Read more